Articles producció científica> Enginyeria Química

Mean-field coarse-grained model for poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer systems

  • Datos identificativos

    Identificador: PC:1181
    Autores:
    Allan D. MackieAlexander J. ColvilleFabián A. García Daza
    Resumen:
    The microscopic modeling of surfactant systems is of the utmost importance in understanding the mechanisms related to the micellization process because it allows for prediction and comparison with experimental data of diverse equilibrium system properties. In this work, we present a coarse-grained model for Pluronics, a trademarked type of triblock copolymer, from simulations based on a single-chain mean-field theory (SCMF). This microscopic model is used to quantify the micellization process of these nonionic surfactants at 37 °C and has been shown to be able to quantitatively reproduce experimental data of the critical micelle concentration (CMC) along with other equilibrium properties. In particular, these results correctly capture the experimental behavior with respect to the lengths of the hydrophobic and hydrophilic moieties of the surfactants for low and medium hydrophobicities. However, for the more highly hydrophobic systems with low CMCs, a deviation is found which has been previously attributed to nonequilibrium effects in the experimental data (García Daza, F. A.; Mackie, A. D. Low Critical Micelle Concentration Discrepancy between Theory and Experiment. © 2015 American Chemical Society.
  • Otros:

    Autor según el artículo: Allan D. Mackie Alexander J. Colville Fabián A. García Daza
    Departamento: Enginyeria Química
    Autor/es de la URV: GARCIA DAZA, FABIÁN ALONSO Alexander J. Colville MACKIE, ALLAN DONALD
    Palabras clave: critical micelle concentration (CMC) Copolymers Block copolymers
    Resumen: The microscopic modeling of surfactant systems is of the utmost importance in understanding the mechanisms related to the micellization process because it allows for prediction and comparison with experimental data of diverse equilibrium system properties. In this work, we present a coarse-grained model for Pluronics, a trademarked type of triblock copolymer, from simulations based on a single-chain mean-field theory (SCMF). This microscopic model is used to quantify the micellization process of these nonionic surfactants at 37 °C and has been shown to be able to quantitatively reproduce experimental data of the critical micelle concentration (CMC) along with other equilibrium properties. In particular, these results correctly capture the experimental behavior with respect to the lengths of the hydrophobic and hydrophilic moieties of the surfactants for low and medium hydrophobicities. However, for the more highly hydrophobic systems with low CMCs, a deviation is found which has been previously attributed to nonequilibrium effects in the experimental data (García Daza, F. A.; Mackie, A. D. Low Critical Micelle Concentration Discrepancy between Theory and Experiment. © 2015 American Chemical Society.
    Grupo de investigación: Molecular simulation I: Complex Systems
    Áreas temáticas: Chemical engineering Ingeniería química Enginyeria química
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 0743-7463
    Identificador del autor: 0000-0002-1819-7820 n/a n/a
    Fecha de alta del registro: 2015-07-16
    Página final: 3604
    Volumen de revista: 31
    Versión del articulo depositado: info:eu-repo/semantics/acceptedVersion
    Enlace a la fuente original: http://pubs.acs.org/doi/abs/10.1021/la504884m
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    DOI del artículo: 10.1021/la504884m
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2015
    Página inicial: 3596
    Tipo de publicación: Article Artículo Article
  • Palabras clave:

    Micel·les
    Química de superfícies
    Copolímers de bloc
    critical micelle concentration (CMC)
    Copolymers
    Block copolymers
    Chemical engineering
    Ingeniería química
    Enginyeria química
    0743-7463
  • Documentos:

  • Cerca a google

    Search to google scholar