Articles producció científica> Ciències Mèdiques Bàsiques

Evaluation of cytokeratin-19 in breast cancer tissue samples: A comparison of automatic and manual evaluations of scanned tissue microarray cylinders

  • Datos identificativos

    Identificador: PC:1808
    Autores:
    Marylène LejeuneCristina CallauAnna KorzynskaMarcial GarcíaGloria BuenoRamon BoschJoaquín JaénGuifré OreroTeresa SalvadóCarlos López
    Resumen:
    Background: Digital image (DI) analysis avoids visual subjectivity in interpreting immunohistochemical stains and provides more reproducible results. An automated procedure consisting of two variant methods for quantifying the cytokeratin-19 (CK19) marker in breast cancer tissues is presented. Methods: The first method (A) excludes the holes inside selected CK19 stained areas, and the second (B) includes them. 93 DIs scanned from complete cylinders of tissue microarrays were evaluated visually by two pathologists and by the automated procedures. Results and conclusions: There was good concordance between the two automated methods, both of which tended to identify a smaller CK19-positive area than did the pathologists. The results obtained with method B were more similar to those of the pathologists; probably because it takes into account the entire positive tumoural area, including the holes. However, the pathologists overestimated the positive area of CK19. Further studies are needed to confirm the utility of this automated procedure in prognostic studies.
  • Otros:

    Autor según el artículo: Marylène Lejeune; Cristina Callau; Anna Korzynska; Marcial García; Gloria Bueno; Ramon Bosch; Joaquín Jaén; Guifré Orero; Teresa Salvadó; Carlos López
    Departamento: Ciències Mèdiques Bàsiques
    e-ISSN: 1475-925X
    Autor/es de la URV: LEJEUNE, MARYLÈNE ; Cristina Callau; Anna Korzynska; Marcial García; Gloria Bueno; Ramon Bosch; Joaquín Jaén; Guifré Orero; Teresa Salvadó; Carlos López
    Palabras clave: image processing
    Resumen: Background: Digital image (DI) analysis avoids visual subjectivity in interpreting immunohistochemical stains and provides more reproducible results. An automated procedure consisting of two variant methods for quantifying the cytokeratin-19 (CK19) marker in breast cancer tissues is presented. Methods: The first method (A) excludes the holes inside selected CK19 stained areas, and the second (B) includes them. 93 DIs scanned from complete cylinders of tissue microarrays were evaluated visually by two pathologists and by the automated procedures. Results and conclusions: There was good concordance between the two automated methods, both of which tended to identify a smaller CK19-positive area than did the pathologists. The results obtained with method B were more similar to those of the pathologists; probably because it takes into account the entire positive tumoural area, including the holes. However, the pathologists overestimated the positive area of CK19. Further studies are needed to confirm the utility of this automated procedure in prognostic studies.
    Grupo de investigación: Patologia Oncològica i Bioinformàtica 2016
    Áreas temáticas: Ciències de la salut Ciencias de la salud Health sciences
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Identificador del autor: N/D; N/D; N/D; N/D; N/D; N/D; N/D; N/D; N/D; N/D
    Fecha de alta del registro: 2016-07-29
    Volumen de revista: 14
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Enlace a la fuente original: http://www.biomedical-engineering-online.com/supplements/14/S2.
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    DOI del artículo: 10.1186/1475-925X-14-S2-S2
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2016
    Tipo de publicación: Article Artículo Article
  • Palabras clave:

    Mama -- Càncer
    Queratina -- Metabolisme
    image processing
    Ciències de la salut
    Ciencias de la salud
    Health sciences
  • Documentos:

  • Cerca a google

    Search to google scholar