Articles producció científica> Ciències Mèdiques Bàsiques

Classification of a hypervirulent aeromonas hydrophila pathotype responsible for epidemic outbreaks in warm-water fishes

  • Datos identificativos

    Identificador: PC:1954
    Autores:
    Maria J. FiguerasCody R. Rasmussen-IveyMohammad J. HossainSara E.OdomJeffery S. TerhuneWilliam G. HemstreetCraig A. ShoemakerDunhua ZhangDe-Hai XuMatt J. GriffinYong-Jie LiuScott R. SantosJoseph C. NewtonMark R. Liles
    Resumen:
    Lineages of hypervirulent Aeromonas hydrophila (vAh) are the cause of persistent outbreaks of motile Aeromonas septicemia in warm-water fishes worldwide. Over the last decade, this virulent lineage of A. hydrophila has resulted in annual losses of millions of tons of farmed carp and catfish in the People's Republic of China and the United States (US). Multiple lines of evidence indicate US catfish and Asian carp isolates of A. hydrophila affiliated with sequence type 251 (ST251) share a recent common ancestor. To address the genomic context for the putative intercontinental transfer and subsequent geographic spread of this pathogen, we conducted a core genome phylogenetic analysis on 61 Aeromonas spp. genomes, of which 40 were affiliated with A. hydrophila, with 26 identified as epidemic strains. Phylogenetic analyses indicate all ST251 strains form a coherent lineage affiliated with A. hydrophila. Within this lineage, conserved genetic loci unique to A. hydrophila were identified, with some genes present in consistently higher copy numbers than in non-epidemic A. hydrophila isolates. In addition, results from analyses of representative ST251 isolates support the conclusion that multiple lineages are present within US vAh isolated from Mississippi, whereas vAh isolated from Alabama appear clonal. This is the first report of genomic heterogeneity within US vAh isolates, with some Mississippi isolates showing closer affiliation with the Asian grass carp isolate ZC1 than other vAh isolated in the US. To evaluate the biological significance of the identified heterogeneity, comparative disease challenges were conducted with representatives of different vAh genotypes. These studies revealed that isolate ZC1 yielded significantly lower mortality in channel catfish, relative to
  • Otros:

    Autor según el artículo: Maria J. Figueras; Cody R. Rasmussen-Ivey; Mohammad J. Hossain; Sara E.Odom; Jeffery S. Terhune; William G. Hemstreet; Craig A. Shoemaker; Dunhua Zhang; De-Hai Xu; Matt J. Griffin; Yong-Jie Liu; Scott R. Santos; Joseph C. Newton; Mark R. Liles
    Departamento: Ciències Mèdiques Bàsiques
    Autor/es de la URV: FIGUERAS SALVAT, MARIA JOSEFA; Cody R. Rasmussen-Ivey; Mohammad J. Hossain; Sara E.Odom; Jeffery S. Terhune; William G. Hemstreet; Craig A. Shoemaker; Dunhua Zhang; De-Hai Xu; Matt J. Griffin; Yong-Jie Liu; Scott R. Santos; Joseph C. Newton; Mark R. Liles
    Palabras clave: Aeromonas hydrophila Catfish bacteria
    Resumen: Lineages of hypervirulent Aeromonas hydrophila (vAh) are the cause of persistent outbreaks of motile Aeromonas septicemia in warm-water fishes worldwide. Over the last decade, this virulent lineage of A. hydrophila has resulted in annual losses of millions of tons of farmed carp and catfish in the People's Republic of China and the United States (US). Multiple lines of evidence indicate US catfish and Asian carp isolates of A. hydrophila affiliated with sequence type 251 (ST251) share a recent common ancestor. To address the genomic context for the putative intercontinental transfer and subsequent geographic spread of this pathogen, we conducted a core genome phylogenetic analysis on 61 Aeromonas spp. genomes, of which 40 were affiliated with A. hydrophila, with 26 identified as epidemic strains. Phylogenetic analyses indicate all ST251 strains form a coherent lineage affiliated with A. hydrophila. Within this lineage, conserved genetic loci unique to A. hydrophila were identified, with some genes present in consistently higher copy numbers than in non-epidemic A. hydrophila isolates. In addition, results from analyses of representative ST251 isolates support the conclusion that multiple lineages are present within US vAh isolated from Mississippi, whereas vAh isolated from Alabama appear clonal. This is the first report of genomic heterogeneity within US vAh isolates, with some Mississippi isolates showing closer affiliation with the Asian grass carp isolate ZC1 than other vAh isolated in the US. To evaluate the biological significance of the identified heterogeneity, comparative disease challenges were conducted with representatives of different vAh genotypes. These studies revealed that isolate ZC1 yielded significantly lower mortality in channel catfish, relative to Alabama and Mississippi vAh isolates. Like other Asian vAh isolates, the ZC1 lineage contains all core genes for a complete type VI secretion system (T6SS). In contrast, more virulent US isolates retain only remnants of the T6SS (clpB, hcp, vgrG, and vasH) which may have functional implications. Collectively, these results characterize a hypervirulent A. hydrophila pathotype that affects farmed fish on multiple continents.
    Grupo de investigación: Unitat de Micologia i Microbiologia Ambiental
    Áreas temáticas: Health sciences Ciencias de la salud Ciències de la salut
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 1664-302X
    Identificador del autor: N/P; N/P; N/P; N/P; N/P; N/P; N/P; N/P; N/P; N/P; N/P; N/P; N/P; N/P
    Fecha de alta del registro: 2016-12-07
    Volumen de revista: 7
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Enlace a la fuente original: https://www.frontiersin.org/articles/10.3389/fmicb.2016.01615/full
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    DOI del artículo: 10.3389/fmicb.2016.01615
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2016
    Página inicial: 1615
    Tipo de publicación: Article Artículo Article
  • Palabras clave:

    Peixos -- Malalties
    Aeromonas hydrophila
    Aeromonas hydrophila
    Catfish
    bacteria
    Health sciences
    Ciencias de la salud
    Ciències de la salut
    1664-302X
  • Documentos:

  • Cerca a google

    Search to google scholar