Autor según el artículo: Maite Novo; Ramon Gonzalez; Pilar Morales; Jordi Tronchoni; Gustavo Cordero-Bueso; Enrico Vaudano; Manuel Quirós; Rafael Torres-Pérez; Eva Valero
Departamento: Bioquímica i Biotecnologia
Autor/es de la URV: NOVO MOLINERO, MARIA TERESA; Ramon Gonzalez; Pilar Morales; Jordi Tronchoni; Gustavo Cordero-Bueso; Enrico Vaudano; Manuel Quirós; Rafael Torres-Pérez; Eva Valero
Palabras clave: Osmotic stress GID-complex Endomembrane system
Resumen: Adaptation to changes in osmolarity is fundamental for the survival of living cells, and has implications in food and industrial biotechnology. It has been extensively studied in the yeast Saccharomyces cerevisiae, where the Hog1 stress activated protein kinase was discovered about 20 years ago. Hog1 is the core of the intracellular signaling pathway that governs the adaptive response to osmotic stress in this species. The main endpoint of this program is synthesis and intracellular retention of glycerol, as a compatible osmolyte. Despite many details of the signaling pathways and yeast responses to osmotic challenges have already been described, genome-wide approaches are contributing to refine our knowledge of yeast adaptation to hypertonic media. In this work, we used a quantitative fitness analysis approach in order to deepen our understanding of the interplay between yeast cells and the osmotic environment. Genetic requirements for proper growth under osmotic stress showed both common and specific features when hypertonic conditions were induced by either glucose or sorbitol. Tolerance to high-glucose content requires mitochondrial function, while defective protein targeting to peroxisome, GID-complex function (involved in negative regulation of gluconeogenesis), or chromatin dynamics, result in poor survival to sorbitol-induced osmotic stress. On the other side, the competitive disadvantage of yeast strains defective in the endomembrane system is relieved by hypertonic conditions. This finding points to the Golgi-endosome system as one of the main cell components negatively affected by hyperosmolarity. Most of the biological processes highlighted in this analysis had not been previously related to osmotic stress but are probably relevant in an ecological and evolutionary context.
Grupo de investigación: Grup de Recerca en Nutrigenòmica
Áreas temáticas: Biochemistry and technology Bioquímica y tecnología Bioquímica i biotecnologia
Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
ISSN: 1664-302X
Identificador del autor: 0000-0002-2454-1990; n/a; 0000-0002-0130-6111; 0000-0001-9227-2713; 0000-0003-1538-066X; 0000-0002-2091-1464; n/a; n/a; n/a
Fecha de alta del registro: 2016-11-25
Volumen de revista: 7
Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
Enlace a la fuente original: https://www.frontiersin.org/articles/10.3389/fmicb.2016.01545/full
URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
DOI del artículo: 10.3389/fmicb.2016.01545
Entidad: Universitat Rovira i Virgili
Año de publicación de la revista: 2016
Página inicial: Art.num. 1545
Tipo de publicación: Article Artículo Article