Articles producció científica> Ciències Mèdiques Bàsiques

Population dynamics and ecology of Arcobacter in sewage

  • Datos identificativos

    Identificador: imarina:3666551
    Autores:
    Fisher, Jenny C.Levican, ArturoFigueras, Maria J.McLellan, Sandra L.
    Resumen:
    Arcobacter species are highly abundant in sewage where they often comprise approximately 5¿11% of the bacterial community. Oligotyping of sequences amplified from the V4V5 region of the 16S rRNA gene revealed Arcobacter populations from different cities were similar and dominated by 1¿3 members, with extremely high microdiversity in the minor members. Overall, nine subgroups within the Arcobacter genus accounted for >80% of the total Arcobacter sequences in all samples analyzed. The distribution of oligotypes varied by both sample site and temperature, with samples from the same site generally being more similar to each other than other sites. Seven oligotypes matched with 100% identity to characterized Arcobacter species, but the remaining 19 abundant oligotypes appear to be unknown species. Sequences representing the two most abundant oligotypes matched exactly to the reference strains for A. cryaerophilus group 1B (CCUG 17802) and group 1A (CCUG 17801T), respectively. Oligotype 1 showed generally lower relative abundance in colder samples and higher relative abundance in warmer samples; the converse was true for Oligotype 2. Ten other oligotypes had significant positive or negative correlations between temperature and proportion in samples as well. The oligotype that corresponded to A. butzleri, the Arcobacter species most commonly isolated by culturing in sewage studies, was only the eleventh most abundant oligotype. This work suggests that Arcobacter populations within sewer infrastructure are modulated by temperature. Furthermore, current culturing methods used for identification of Arcobacter fail to identify some abundant members of the community and may underestimate the presence of species with affinities for growth at lower temperatures. Understanding the eco
  • Otros:

    Autor según el artículo: Fisher, Jenny C.; Levican, Arturo; Figueras, Maria J.; McLellan, Sandra L.;
    Departamento: Ciències Mèdiques Bàsiques
    Autor/es de la URV: Figueras Salvat, María Josefa
    Palabras clave: V4v5 Sewage Population dynamics Oligotyping Illumina miseq Arcobacter v4v5 population dynamics oligotyping illumina miseq arcobacter
    Resumen: Arcobacter species are highly abundant in sewage where they often comprise approximately 5¿11% of the bacterial community. Oligotyping of sequences amplified from the V4V5 region of the 16S rRNA gene revealed Arcobacter populations from different cities were similar and dominated by 1¿3 members, with extremely high microdiversity in the minor members. Overall, nine subgroups within the Arcobacter genus accounted for >80% of the total Arcobacter sequences in all samples analyzed. The distribution of oligotypes varied by both sample site and temperature, with samples from the same site generally being more similar to each other than other sites. Seven oligotypes matched with 100% identity to characterized Arcobacter species, but the remaining 19 abundant oligotypes appear to be unknown species. Sequences representing the two most abundant oligotypes matched exactly to the reference strains for A. cryaerophilus group 1B (CCUG 17802) and group 1A (CCUG 17801T), respectively. Oligotype 1 showed generally lower relative abundance in colder samples and higher relative abundance in warmer samples; the converse was true for Oligotype 2. Ten other oligotypes had significant positive or negative correlations between temperature and proportion in samples as well. The oligotype that corresponded to A. butzleri, the Arcobacter species most commonly isolated by culturing in sewage studies, was only the eleventh most abundant oligotype. This work suggests that Arcobacter populations within sewer infrastructure are modulated by temperature. Furthermore, current culturing methods used for identification of Arcobacter fail to identify some abundant members of the community and may underestimate the presence of species with affinities for growth at lower temperatures. Understanding the ecological factors that affect the survival and growth of Arcobacter spp. in sewer infrastructure may better inform the risks associated with these emerging pathogens.
    Áreas temáticas: Zootecnia / recursos pesqueiros Saúde coletiva Química Odontología Nutrição Microbiology (medical) Microbiology Medicina veterinaria Medicina ii Medicina i Materiais Matemática / probabilidade e estatística Interdisciplinar Geografía Geociências Farmacia Ensino Engenharias iii Engenharias ii Engenharias i Economia Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Ciência da computação Biotecnología Biodiversidade Astronomia / física
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: mariajose.figueras@urv.cat
    Identificador del autor: 0000-0002-2268-8980
    Fecha de alta del registro: 2024-09-07
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Enlace a la fuente original: https://www.frontiersin.org/articles/10.3389/fmicb.2014.00525/full
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Frontiers In Microbiology. 5 (NOV): 525-
    Referencia de l'ítem segons les normes APA: Fisher, Jenny C.; Levican, Arturo; Figueras, Maria J.; McLellan, Sandra L.; (2014). Population dynamics and ecology of Arcobacter in sewage. Frontiers In Microbiology, 5(NOV), 525-. DOI: 10.3389/fmicb.2014.00525
    DOI del artículo: 10.3389/fmicb.2014.00525
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2014
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Microbiology,Microbiology (Medical)
    V4v5
    Sewage
    Population dynamics
    Oligotyping
    Illumina miseq
    Arcobacter
    v4v5
    population dynamics
    oligotyping
    illumina miseq
    arcobacter
    Zootecnia / recursos pesqueiros
    Saúde coletiva
    Química
    Odontología
    Nutrição
    Microbiology (medical)
    Microbiology
    Medicina veterinaria
    Medicina ii
    Medicina i
    Materiais
    Matemática / probabilidade e estatística
    Interdisciplinar
    Geografía
    Geociências
    Farmacia
    Ensino
    Engenharias iii
    Engenharias ii
    Engenharias i
    Economia
    Ciências biológicas iii
    Ciências biológicas ii
    Ciências biológicas i
    Ciências ambientais
    Ciências agrárias i
    Ciência de alimentos
    Ciência da computação
    Biotecnología
    Biodiversidade
    Astronomia / física
  • Documentos:

  • Cerca a google

    Search to google scholar