Articles producció científica> Enginyeria Informàtica i Matemàtiques

On Improving Breast Density Segmentation Using Conditional Generative Adversarial Networks

  • Datos identificativos

    Identificador: imarina:4089622
    Autores:
    Saffari NRashwan HAHerrera BRomani SArenas MPuig D
    Resumen:
    © 2018 The authors and IOS Press. Breast density is a crucial factor to follow-up the relapse of breast cancer in mammograms and the risk of local recurrence after conservative surgery and/or radiotherapy. Accurate breast density estimation with visual assessment is still a challenge due to faint contrast and significant variations in background fatty tissues in mammograms. The important key of breast density estimation is to properly detect the dense tissues in a mammographic image. Thus, this paper presents an automatic deep breast density segmentation using conditional Generative Adversarial Networks (cGAN) that consist of two successive deep networks: generator and discriminator. The generator network learns the mapping from the input mammogram to the output binary mask detection the area of the dense tissues. In turn, the discriminator learns a loss function to train this mapping by comparing the ground-truth and the predicted mask under observing the input mammogram as a condition. The performance of the proposed model was evaluated on the public INbreast mammographic datasets. The proposed model can segment the dense regions with overall recall, precision and F-score about 95%, 92%, and 93%, respectively, outperforming state-of-the-art of breast density segmentation. The proposed model can segment more than 40 images with a size of 512×512 per second on a recent GPU.
  • Otros:

    Autor según el artículo: Saffari N; Rashwan HA; Herrera B; Romani S; Arenas M; Puig D
    Departamento: Ciències Mèdiques Bàsiques Enginyeria Informàtica i Matemàtiques
    Autor/es de la URV: Abdellatif Fatahallah Ibrahim Mahmoud, Hatem / Arenas Prat, Meritxell / Herrera Gómez, Blas / Puig Valls, Domènec Savi / Romaní Also, Santiago / Saffari Tabalvandani, Nasibeh
    Palabras clave: Mammograms Generative adversarial networks Deep learning Breast density estimation Breast cancer
    Resumen: © 2018 The authors and IOS Press. Breast density is a crucial factor to follow-up the relapse of breast cancer in mammograms and the risk of local recurrence after conservative surgery and/or radiotherapy. Accurate breast density estimation with visual assessment is still a challenge due to faint contrast and significant variations in background fatty tissues in mammograms. The important key of breast density estimation is to properly detect the dense tissues in a mammographic image. Thus, this paper presents an automatic deep breast density segmentation using conditional Generative Adversarial Networks (cGAN) that consist of two successive deep networks: generator and discriminator. The generator network learns the mapping from the input mammogram to the output binary mask detection the area of the dense tissues. In turn, the discriminator learns a loss function to train this mapping by comparing the ground-truth and the predicted mask under observing the input mammogram as a condition. The performance of the proposed model was evaluated on the public INbreast mammographic datasets. The proposed model can segment the dense regions with overall recall, precision and F-score about 95%, 92%, and 93%, respectively, outperforming state-of-the-art of breast density segmentation. The proposed model can segment more than 40 images with a size of 512×512 per second on a recent GPU.
    Áreas temáticas: Medicina ii Interdisciplinar Información y documentación General o multidisciplinar Engenharias iv Engenharias iii Comunicació i informació Ciências agrárias i Artificial intelligence
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 15356698
    Direcció de correo del autor: hatem.abdellatif@urv.cat nasibeh.saffarit@estudiants.urv.cat meritxell.arenas@urv.cat santiago.romani@urv.cat domenec.puig@urv.cat blas.herrera@urv.cat
    Identificador del autor: 0000-0001-5421-1637 0000-0003-0815-2570 0000-0001-6673-9615 0000-0002-0562-4205 0000-0003-2924-9195
    Fecha de alta del registro: 2024-09-21
    Versión del articulo depositado: info:eu-repo/semantics/submittedVersion
    Enlace a la fuente original: https://ebooks.iospress.nl/publication/50434
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Frontiers In Artificial Intelligence And Applications. 308 386-393
    Referencia de l'ítem segons les normes APA: Saffari N; Rashwan HA; Herrera B; Romani S; Arenas M; Puig D (2018). On Improving Breast Density Segmentation Using Conditional Generative Adversarial Networks. Amsterdam: IOS Press
    DOI del artículo: 10.3233/978-1-61499-918-8-386
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2018
    Tipo de publicación: Proceedings Paper
  • Palabras clave:

    Artificial Intelligence
    Mammograms
    Generative adversarial networks
    Deep learning
    Breast density estimation
    Breast cancer
    Medicina ii
    Interdisciplinar
    Información y documentación
    General o multidisciplinar
    Engenharias iv
    Engenharias iii
    Comunicació i informació
    Ciências agrárias i
    Artificial intelligence
  • Documentos:

  • Cerca a google

    Search to google scholar