Autor según el artículo: Belmonte A., Fernández-Francos X., De la Flor S., Serra À.
Departamento: Enginyeria Mecànica Química Analítica i Química Orgànica
Autor/es de la URV: De la Flor Lopez, Silvia / Fernández Francos, Xavier / Serra Albet, Maria Angels
Palabras clave: Thiol-epoxy Thermosets Temperature Stress Shape-memory polymer Progress Polymer networks Kinetics Isothermal-recovery Click chemistry Behavior
Resumen: The shape-memory response (SMR) of 'click' thiol-epoxy polymers produced using latent catalysts, with different network structure and thermo-mechanical properties, was tested on unconstrained shape-recovery processes under isothermal conditions. Experiments at several programming temperatures (Tprog) and isothermal-recovery temperatures (Tiso) were carried out, and the shape-memory stability was analyzed through various consecutive shape-memory cycles. The temperature profile during the isothermal-recovery experiments was monitored, and it showed that the shape-recovery process takes place while the sample is becoming thermally stable and before stable isothermal temperature conditions are eventually reached. The shape-recovery process takes place in two different stages regardless of Tiso: a slow initial stage until the process is triggered at a temperature strongly related with the beginning of network relaxation, followed by the typical exponential decay of the relaxation processes until completion at a temperature below or very close to Tg. The shape-recovery process is slower in materials with more densely crosslinked and hindered network structures. The shape-recovery time (tsr) is significantly reduced when the isothermal-recovery temperature Tiso increases from below to above Tg because the network relaxation dynamics accelerates. However, the temperature range from the beginning to the end of the recovery process is hardly affected by Tiso; at higher Tiso it is only slightly shifted to higher temperatures. These results suggest that the shape-recovery process can be controlled by changing the network structure and working at Tiso < Tg to maximize the effect of the structure and/or by increasing Tiso to minimize the effect but increasing the shaperecovery rate.
Áreas temáticas: Mechanics Mechanical engineering Materials science, characterization & testing Materials science (miscellaneous) Materials science (all) Materiais General materials science General chemical engineering Engenharias iii Chemical engineering (miscellaneous) Chemical engineering (all) Aerospace engineering
ISSN: 13852000
Direcció de correo del autor: angels.serra@urv.cat xavier.fernandez@urv.cat silvia.delaflor@urv.cat
Identificador del autor: 0000-0003-1387-0358 0000-0002-3492-2922 0000-0002-6851-1371
Página final: 149
Fecha de alta del registro: 2024-09-07
Volumen de revista: 21
Versión del articulo depositado: info:eu-repo/semantics/acceptedVersion
URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
Referencia al articulo segun fuente origial: Mechanics Of Time-Dependent Materials. 21 (2): 133-149
Referencia de l'ítem segons les normes APA: Belmonte A., Fernández-Francos X., De la Flor S., Serra À. (2017). Network structure dependence on unconstrained isothermal-recovery processes for shape-memory thiol-epoxy 'click' systems. Mechanics Of Time-Dependent Materials, 21(2), 133-149. DOI: 10.1007/s11043-016-9322-z
Entidad: Universitat Rovira i Virgili
Año de publicación de la revista: 2017
Página inicial: 133
Tipo de publicación: Journal Publications