Articles producció científica> Bioquímica i Biotecnologia

Identification of a nutrient-sensing transcriptional network in monocytes by using inbred rat models on a cafeteria diet

  • Datos identificativos

    Identificador: imarina:5129992
    Autores:
    Martinez-Micaelo, NeusGonzalez-Abuin, NoemiTerra, XimenaArdevol, AnaPinent, MontserratPetretto, EnricoBehmoaras, JacquesBlay, Mayte
    Resumen:
    Obesity has reached pandemic levels worldwide. The current models of diet-induced obesity in rodents use predominantly high-fat based diets that do not take into account the consumption of variety of highly palatable, energy-dense foods that are prevalent in Western society. We and others have shown that the cafeteria (CAF) diet is a robust and reproducible model of human metabolic syndrome with tissue inflammation in the rat. We have previously shown that inbred rat strains such as Wistar Kyoto (WKY) and Lewis (LEW) show different susceptibilities to CAF diets with distinct metabolic and morphometric profiles. Here, we show a difference in plasma MCP-1 levels and investigate the effect of the CAF diet on peripheral blood monocyte transcriptome, as powerful stress-sensing immune cells, in WKY and LEW rats. We found that 75.5% of the differentially expressed transcripts under the CAF diet were upregulated in WKY rats and were functionally related to the activation of the immune response. Using a gene co-expression network constructed from the genes differentially expressed between CAF diet-fed LEW and WKY rats, we identified acyl-CoA synthetase short-chain family member 2 (Acss2) as a hub gene for a nutrient-sensing cluster of transcripts in monocytes. The Acss2 genomic region is significantly enriched for previously established metabolism quantitative trait loci in the rat. Notably, monocyte expression levels of Acss2 significantly correlated with plasma glucose, triglyceride, leptin and non-esterified fatty acid (NEFA) levels as well as morphometric measurements such as body weight and the total fat following feeding with the CAF diet in the rat. These results show the importance of the genetic background in nutritional genomics and identify inbred rat strains as poten
  • Otros:

    Autor según el artículo: Martinez-Micaelo, Neus; Gonzalez-Abuin, Noemi; Terra, Ximena; Ardevol, Ana; Pinent, Montserrat; Petretto, Enrico; Behmoaras, Jacques; Blay, Mayte
    Departamento: Bioquímica i Biotecnologia
    Autor/es de la URV: Ardévol Grau, Anna / Blay Olivé, Maria Teresa / Martínez Micaelo, Nieves Beatriz / Pinent Armengol, Montserrat / Terra Barbadora, Ximena
    Palabras clave: Wky Monocyte transcriptome Lew Inbred rats Cafeteria diet monocyte transcriptome lew inbred rats cafeteria diet
    Resumen: Obesity has reached pandemic levels worldwide. The current models of diet-induced obesity in rodents use predominantly high-fat based diets that do not take into account the consumption of variety of highly palatable, energy-dense foods that are prevalent in Western society. We and others have shown that the cafeteria (CAF) diet is a robust and reproducible model of human metabolic syndrome with tissue inflammation in the rat. We have previously shown that inbred rat strains such as Wistar Kyoto (WKY) and Lewis (LEW) show different susceptibilities to CAF diets with distinct metabolic and morphometric profiles. Here, we show a difference in plasma MCP-1 levels and investigate the effect of the CAF diet on peripheral blood monocyte transcriptome, as powerful stress-sensing immune cells, in WKY and LEW rats. We found that 75.5% of the differentially expressed transcripts under the CAF diet were upregulated in WKY rats and were functionally related to the activation of the immune response. Using a gene co-expression network constructed from the genes differentially expressed between CAF diet-fed LEW and WKY rats, we identified acyl-CoA synthetase short-chain family member 2 (Acss2) as a hub gene for a nutrient-sensing cluster of transcripts in monocytes. The Acss2 genomic region is significantly enriched for previously established metabolism quantitative trait loci in the rat. Notably, monocyte expression levels of Acss2 significantly correlated with plasma glucose, triglyceride, leptin and non-esterified fatty acid (NEFA) levels as well as morphometric measurements such as body weight and the total fat following feeding with the CAF diet in the rat. These results show the importance of the genetic background in nutritional genomics and identify inbred rat strains as potential models for CAF-diet-induced obesity.© 2016. Published by The Company of Biologists Ltd.
    Áreas temáticas: Pathology Odontología Neuroscience (miscellaneous) Medicine (miscellaneous) Medicina veterinaria Medicina i Immunology and microbiology (miscellaneous) General biochemistry,genetics and molecular biology Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Cell biology Biotecnología Biochemistry, genetics and molecular biology (miscellaneous) Biochemistry, genetics and molecular biology (all) Astronomia / física
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: neus.martinez@urv.cat anna.ardevol@urv.cat ximena.terra@urv.cat mteresa.blay@urv.cat montserrat.pinent@urv.cat
    Identificador del autor: 0000-0003-0156-7538 0000-0003-1043-5844 0000-0002-6256-9847 0000-0003-3550-5378
    Fecha de alta del registro: 2024-09-07
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Enlace a la fuente original: https://journals.biologists.com/dmm/article/9/10/1231/3814/Identification-of-a-nutrient-sensing
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Disease Models & Mechanisms. 9 (10): 1231-1239
    Referencia de l'ítem segons les normes APA: Martinez-Micaelo, Neus; Gonzalez-Abuin, Noemi; Terra, Ximena; Ardevol, Ana; Pinent, Montserrat; Petretto, Enrico; Behmoaras, Jacques; Blay, Mayte (2016). Identification of a nutrient-sensing transcriptional network in monocytes by using inbred rat models on a cafeteria diet. Disease Models & Mechanisms, 9(10), 1231-1239. DOI: 10.1242/dmm.025528
    DOI del artículo: 10.1242/dmm.025528
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2016
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Biochemistry, Genetics and Molecular Biology (Miscellaneous),Cell Biology,Immunology and Microbiology (Miscellaneous),Medicine (Miscellaneous),Neuroscience (Miscellaneous),Pathology
    Wky
    Monocyte transcriptome
    Lew
    Inbred rats
    Cafeteria diet
    monocyte transcriptome
    lew
    inbred rats
    cafeteria diet
    Pathology
    Odontología
    Neuroscience (miscellaneous)
    Medicine (miscellaneous)
    Medicina veterinaria
    Medicina i
    Immunology and microbiology (miscellaneous)
    General biochemistry,genetics and molecular biology
    Ciências biológicas iii
    Ciências biológicas ii
    Ciências biológicas i
    Cell biology
    Biotecnología
    Biochemistry, genetics and molecular biology (miscellaneous)
    Biochemistry, genetics and molecular biology (all)
    Astronomia / física
  • Documentos:

  • Cerca a google

    Search to google scholar