Articles producció científica> Enginyeria Mecànica

Performance evaluation of membrane-based absorbers employing H2O/(LiBr + LiI + LiNO3 + LiCl) and H2O/(LiNO3 + KNO3 + NaNO3) as working pairs in absorption cooling systems

  • Datos identificativos

    Identificador: imarina:5130268
    Autores:
    Asfand, FaisalStiriba, YoussefBourouis, Mahmoud
    Resumen:
    In recent years, rigorous research has been carried out on the use of membrane contactors to design compact absorbers for absorption cooling systems and to extend their use in small scale applications. Moreover, the use of new working fluid mixtures has been suggested for the absorption cooling systems to cope with the limitations and problems associated with the conventional working fluid mixtures. In this study, water/(LiBr + LiI + LiNO3 + LiCl) with mass compositions in salts of 60.16%, 9.55%, 18.54% and 11.75%, respectively, and water/(LiNO3 + KNO3 + NaNO3) with mass compositions in salts of 53%, 28% and 19%, respectively, were investigated for air-cooled and multi-stage high temperature absorption cooling systems, respectively. Results show that a 25% increase in the absorption rate can be achieved by using water/(LiBr + Li + LiNO3 + LiCl) when compared to water/LiBr at air-cooling thermal conditions. Furthermore, an absorption rate as high as 0.00523 kg/m2 s is achieved when the water/(LiNO3 + KNO3 + NaNO3) working fluid mixture is used in the membrane-based absorber of the third stage of a triple effect absorption cooling cycle. In addition, the pressure drop percentage in the case of water/(LiNO3 + KNO3 + NaNO3) working fluid mixture is significantly lower than the water/LiBr and water/(LiBr + LiI + LiNO3 + LiCl) working fluid mixtures because of the higher operating pressure.
  • Otros:

    Autor según el artículo: Asfand, Faisal; Stiriba, Youssef; Bourouis, Mahmoud
    Departamento: Enginyeria Mecànica
    Autor/es de la URV: Bourouis Chebata, Mahmoud / Stiriba, Youssef
    Palabras clave: Plate-and-frame membrane absorber Membrane contactors H o/(lino  + kno  + nano ) 2 3 3 3 H o/(libr + lii + lino  + licl) 2 3 Cfd simulation Absorption cooling systems
    Resumen: In recent years, rigorous research has been carried out on the use of membrane contactors to design compact absorbers for absorption cooling systems and to extend their use in small scale applications. Moreover, the use of new working fluid mixtures has been suggested for the absorption cooling systems to cope with the limitations and problems associated with the conventional working fluid mixtures. In this study, water/(LiBr + LiI + LiNO3 + LiCl) with mass compositions in salts of 60.16%, 9.55%, 18.54% and 11.75%, respectively, and water/(LiNO3 + KNO3 + NaNO3) with mass compositions in salts of 53%, 28% and 19%, respectively, were investigated for air-cooled and multi-stage high temperature absorption cooling systems, respectively. Results show that a 25% increase in the absorption rate can be achieved by using water/(LiBr + Li + LiNO3 + LiCl) when compared to water/LiBr at air-cooling thermal conditions. Furthermore, an absorption rate as high as 0.00523 kg/m2 s is achieved when the water/(LiNO3 + KNO3 + NaNO3) working fluid mixture is used in the membrane-based absorber of the third stage of a triple effect absorption cooling cycle. In addition, the pressure drop percentage in the case of water/(LiNO3 + KNO3 + NaNO3) working fluid mixture is significantly lower than the water/LiBr and water/(LiBr + LiI + LiNO3 + LiCl) working fluid mixtures because of the higher operating pressure.
    Áreas temáticas: Thermodynamics Renewable energy, sustainability and the environment Química Pollution Modeling and simulation Medicina iii Medicina ii Mechanical engineering Materiais Management, monitoring, policy and law Interdisciplinar Industrial and manufacturing engineering Geografía Geociências General energy Fuel technology Engineering, chemical Engenharias iv Engenharias iii Engenharias ii Engenharias i Energy engineering and power technology Energy (miscellaneous) Energy (all) Energy & fuels Electrical and electronic engineering Economia Civil and structural engineering Ciências ambientais Ciências agrárias i Ciência de alimentos Ciência da computação Building and construction Biotecnología Biodiversidade Administração pública e de empresas, ciências contábeis e turismo
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: youssef.stiriba@urv.cat mahmoud.bourouis@urv.cat
    Identificador del autor: 0000-0002-0272-7807 0000-0003-2476-5967
    Fecha de alta del registro: 2024-09-07
    Versión del articulo depositado: info:eu-repo/semantics/acceptedVersion
    Enlace a la fuente original: https://www.sciencedirect.com/science/article/abs/pii/S0360544216312166?via%3Dihub
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Energy. 115 781-790
    Referencia de l'ítem segons les normes APA: Asfand, Faisal; Stiriba, Youssef; Bourouis, Mahmoud (2016). Performance evaluation of membrane-based absorbers employing H2O/(LiBr + LiI + LiNO3 + LiCl) and H2O/(LiNO3 + KNO3 + NaNO3) as working pairs in absorption cooling systems. Energy, 115(), 781-790. DOI: 10.1016/j.energy.2016.08.103
    DOI del artículo: 10.1016/j.energy.2016.08.103
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2016
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Building and Construction,Civil and Structural Engineering,Electrical and Electronic Engineering,Energy & Fuels,Energy (Miscellaneous),Energy Engineering and Power Technology,Engineering, Chemical,Fuel Technology,Industrial and Manufacturing Engineering,Management, Monitoring, Policy and Law,Mechanical Engineering,Modeling and Simulation,P
    Plate-and-frame membrane absorber
    Membrane contactors
    H o/(lino  + kno  + nano ) 2 3 3 3
    H o/(libr + lii + lino  + licl) 2 3
    Cfd simulation
    Absorption cooling systems
    Thermodynamics
    Renewable energy, sustainability and the environment
    Química
    Pollution
    Modeling and simulation
    Medicina iii
    Medicina ii
    Mechanical engineering
    Materiais
    Management, monitoring, policy and law
    Interdisciplinar
    Industrial and manufacturing engineering
    Geografía
    Geociências
    General energy
    Fuel technology
    Engineering, chemical
    Engenharias iv
    Engenharias iii
    Engenharias ii
    Engenharias i
    Energy engineering and power technology
    Energy (miscellaneous)
    Energy (all)
    Energy & fuels
    Electrical and electronic engineering
    Economia
    Civil and structural engineering
    Ciências ambientais
    Ciências agrárias i
    Ciência de alimentos
    Ciência da computação
    Building and construction
    Biotecnología
    Biodiversidade
    Administração pública e de empresas, ciências contábeis e turismo
  • Documentos:

  • Cerca a google

    Search to google scholar