Articles producció científica> Bioquímica i Biotecnologia

Determination of Dehydrogenase Activities Involved in D-Glucose Oxidation in Gluconobacter and Acetobacter Strains

  • Datos identificativos

    Identificador: imarina:5130340
    Autores:
    Sainz, FlorenciaJesus Torija, MariaMatsutani, MinenosukeKataoka, NaoyaYakushi, ToshiharuMatsushita, KazunobuMas, Albert
    Resumen:
    Acetic acid bacteria (AAB) are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane-bound dehydrogenases. In the present study, the enzyme activity of the membrane-bound dehydrogenases [membrane-bound PQQ-glucose dehydrogenase (mGDH), D-gluconate dehydrogenase (GADH) and membrane-bound glycerol dehydrogenase (GLDH)] involved in the oxidation of D-glucose and D-gluconic acid (GA) was determined in six strains of three different species of AAB (three natural and three type strains). Moreover, the effect of these activities on the production of related metabolites [GA, 2-keto-D-gluconic acid (2KGA) and 5-keto-D-gluconic acid (5KGA)] was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the Acetobacter malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h), which coincided with D-glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of Gluconobacter oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24 h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the
  • Otros:

    Autor según el artículo: Sainz, Florencia; Jesus Torija, Maria; Matsutani, Minenosuke; Kataoka, Naoya; Yakushi, Toshiharu; Matsushita, Kazunobu; Mas, Albert
    Departamento: Bioquímica i Biotecnologia
    Autor/es de la URV: Mas Baron, Alberto / Torija Martínez, María Jesús
    Palabras clave: Strawberry beverage Keto-d-gluconic acids D-gluconic acid Acetic acid bacteria keto-d-gluconic acids d-gluconic acid acetic acid bacteria
    Resumen: Acetic acid bacteria (AAB) are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane-bound dehydrogenases. In the present study, the enzyme activity of the membrane-bound dehydrogenases [membrane-bound PQQ-glucose dehydrogenase (mGDH), D-gluconate dehydrogenase (GADH) and membrane-bound glycerol dehydrogenase (GLDH)] involved in the oxidation of D-glucose and D-gluconic acid (GA) was determined in six strains of three different species of AAB (three natural and three type strains). Moreover, the effect of these activities on the production of related metabolites [GA, 2-keto-D-gluconic acid (2KGA) and 5-keto-D-gluconic acid (5KGA)] was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the Acetobacter malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h), which coincided with D-glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of Gluconobacter oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24 h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition. Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter were phylogenetically more closely related each other than with Gluconobacter.
    Áreas temáticas: Zootecnia / recursos pesqueiros Saúde coletiva Química Odontología Nutrição Microbiology (medical) Microbiology Medicina veterinaria Medicina ii Medicina i Materiais Matemática / probabilidade e estatística Interdisciplinar Geografía Geociências Farmacia Ensino Engenharias iii Engenharias ii Engenharias i Economia Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Ciência da computação Biotecnología Biodiversidade Astronomia / física
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: mjesus.torija@urv.cat albert.mas@urv.cat
    Identificador del autor: 0000-0001-6419-0745 0000-0002-0763-1679
    Fecha de alta del registro: 2024-10-12
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Enlace a la fuente original: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2016.01358/full
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Frontiers In Microbiology. 7 (AUG): 1358-
    Referencia de l'ítem segons les normes APA: Sainz, Florencia; Jesus Torija, Maria; Matsutani, Minenosuke; Kataoka, Naoya; Yakushi, Toshiharu; Matsushita, Kazunobu; Mas, Albert (2016). Determination of Dehydrogenase Activities Involved in D-Glucose Oxidation in Gluconobacter and Acetobacter Strains. Frontiers In Microbiology, 7(AUG), 1358-. DOI: 10.3389/fmicb.2016.01358
    DOI del artículo: 10.3389/fmicb.2016.01358
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2016
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Microbiology,Microbiology (Medical)
    Strawberry beverage
    Keto-d-gluconic acids
    D-gluconic acid
    Acetic acid bacteria
    keto-d-gluconic acids
    d-gluconic acid
    acetic acid bacteria
    Zootecnia / recursos pesqueiros
    Saúde coletiva
    Química
    Odontología
    Nutrição
    Microbiology (medical)
    Microbiology
    Medicina veterinaria
    Medicina ii
    Medicina i
    Materiais
    Matemática / probabilidade e estatística
    Interdisciplinar
    Geografía
    Geociências
    Farmacia
    Ensino
    Engenharias iii
    Engenharias ii
    Engenharias i
    Economia
    Ciências biológicas iii
    Ciências biológicas ii
    Ciências biológicas i
    Ciências ambientais
    Ciências agrárias i
    Ciência de alimentos
    Ciência da computação
    Biotecnología
    Biodiversidade
    Astronomia / física
  • Documentos:

  • Cerca a google

    Search to google scholar