Articles producció científica> Enginyeria Informàtica i Matemàtiques

The simultaneous local metric dimension of graph families

  • Datos identificativos

    Identificador: imarina:5131868
    Autores:
    Barragan-Ramirez, Gabriel AEstrada-Moreno, AlejandroRamirez-Cruz, YuniorRodriguez-Velazquez, Juan A
    Resumen:
    In a graph G = (V, E), a vertex v ¿ V is said to distinguish two vertices x and y if dG(v, x) ¿ dG(v, y). A set S ¿ V is said to be a local metric generator for G if any pair of adjacent vertices of G is distinguished by some element of S. A minimum local metric generator is called a local metric basis and its cardinality the local metric dimension of G. A set S ¿ V is said to be a simultaneous local metric generator for a graph family G = (G1, G2, . . . , Gk), defined on a common vertex set, if it is a local metric generator for every graph of the family. A minimum simultaneous local metric generator is called a simultaneous local metric basis and its cardinality the simultaneous local metric dimension of G. We study the properties of simultaneous local metric generators and bases, obtain closed formulae or tight bounds for the simultaneous local metric dimension of several graph families and analyze the complexity of computing this parameter.
  • Otros:

    Autor según el artículo: Barragan-Ramirez, Gabriel A; Estrada-Moreno, Alejandro; Ramirez-Cruz, Yunior; Rodriguez-Velazquez, Juan A
    Departamento: Enginyeria Informàtica i Matemàtiques
    e-ISSN: 2073-8994
    Autor/es de la URV: Estrada Moreno, Alejandro / Rodríguez Velázquez, Juan Alberto
    Palabras clave: Simultaneity Local metric dimension Lexicographic product Corona product Complexity
    Resumen: In a graph G = (V, E), a vertex v ¿ V is said to distinguish two vertices x and y if dG(v, x) ¿ dG(v, y). A set S ¿ V is said to be a local metric generator for G if any pair of adjacent vertices of G is distinguished by some element of S. A minimum local metric generator is called a local metric basis and its cardinality the local metric dimension of G. A set S ¿ V is said to be a simultaneous local metric generator for a graph family G = (G1, G2, . . . , Gk), defined on a common vertex set, if it is a local metric generator for every graph of the family. A minimum simultaneous local metric generator is called a simultaneous local metric basis and its cardinality the simultaneous local metric dimension of G. We study the properties of simultaneous local metric generators and bases, obtain closed formulae or tight bounds for the simultaneous local metric dimension of several graph families and analyze the complexity of computing this parameter.
    Áreas temáticas: Visual arts and performing arts Physics and astronomy (miscellaneous) Multidisciplinary sciences Modeling and simulation Mathematics, interdisciplinary applications Mathematics (miscellaneous) Mathematics (all) Matemática / probabilidade e estatística General mathematics Engineering (miscellaneous) Computer science (miscellaneous) Ciência da computação Chemistry (miscellaneous) Arts and humanities (miscellaneous) Architecture Applied mathematics
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 20738994
    Direcció de correo del autor: alejandro.estrada@urv.cat juanalberto.rodriguez@urv.cat
    Identificador del autor: 0000-0001-9767-2177 0000-0002-9082-7647
    Fecha de alta del registro: 2024-10-26
    Volumen de revista: 9
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Enlace a la fuente original: https://www.mdpi.com/2073-8994/9/8/132
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Symmetry-Basel. 9 (8): 132-
    Referencia de l'ítem segons les normes APA: Barragan-Ramirez, Gabriel A; Estrada-Moreno, Alejandro; Ramirez-Cruz, Yunior; Rodriguez-Velazquez, Juan A (2017). The simultaneous local metric dimension of graph families. Symmetry-Basel, 9(8), 132-. DOI: 10.3390/sym9080132
    DOI del artículo: 10.3390/sym9080132
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2017
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Applied Mathematics,Architecture,Arts and Humanities (Miscellaneous),Chemistry (Miscellaneous),Computer Science (Miscellaneous),Engineering (Miscellaneous),Mathematics (Miscellaneous),Mathematics, Interdisciplinary Applications,Modeling and Simulation,Multidisciplinary Sciences,Physics and Astronomy (Miscellaneous),Visual Arts and Performi
    Simultaneity
    Local metric dimension
    Lexicographic product
    Corona product
    Complexity
    Visual arts and performing arts
    Physics and astronomy (miscellaneous)
    Multidisciplinary sciences
    Modeling and simulation
    Mathematics, interdisciplinary applications
    Mathematics (miscellaneous)
    Mathematics (all)
    Matemática / probabilidade e estatística
    General mathematics
    Engineering (miscellaneous)
    Computer science (miscellaneous)
    Ciência da computação
    Chemistry (miscellaneous)
    Arts and humanities (miscellaneous)
    Architecture
    Applied mathematics
  • Documentos:

  • Cerca a google

    Search to google scholar