Articles producció científica> Enginyeria Informàtica i Matemàtiques

On the Roman domination number of generalized Sierpiński graphs

  • Datos identificativos

    Identificador: imarina:5132236
    Autores:
    Ramezani, FRodriguez-Bazan, E DRodriguez-Velazquez, J A
    Resumen:
    A map f : V → {0, 1, 2} is a Roman dominating function on a graph G = (V, E) if for every vertex v ∈ V with f (v) = 0, there exists a vertex∑ u, adjacent to v, such that f (u) = 2. The weight of a Roman dominating function is given by f (V) =u∈V f (u). The minimum weight among all Roman dominating functions on G is called the Roman domination number of G. In this article we study the Roman domination number of Generalized Sierpiński graphs S(G, t). More precisely, we obtain a general upper bound on the Roman domination number of S(G, t) and discuss the tightness of this bound. In particular, we focus on the cases in which the base graph G is a path, a cycle, a complete graph or a graph having exactly one universal vertex.
  • Otros:

    Autor según el artículo: Ramezani, F; Rodriguez-Bazan, E D; Rodriguez-Velazquez, J A
    Departamento: Enginyeria Informàtica i Matemàtiques
    Autor/es de la URV: Rodríguez Velázquez, Juan Alberto
    Palabras clave: Sierpiński graph Roman domination number Generalized sierpiński graph
    Resumen: A map f : V → {0, 1, 2} is a Roman dominating function on a graph G = (V, E) if for every vertex v ∈ V with f (v) = 0, there exists a vertex∑ u, adjacent to v, such that f (u) = 2. The weight of a Roman dominating function is given by f (V) =u∈V f (u). The minimum weight among all Roman dominating functions on G is called the Roman domination number of G. In this article we study the Roman domination number of Generalized Sierpiński graphs S(G, t). More precisely, we obtain a general upper bound on the Roman domination number of S(G, t) and discuss the tightness of this bound. In particular, we focus on the cases in which the base graph G is a path, a cycle, a complete graph or a graph having exactly one universal vertex.
    Áreas temáticas: Mathematics, applied Mathematics (miscellaneous) Mathematics (all) Mathematics General mathematics Engenharias iii Economia Ciências agrárias i
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: juanalberto.rodriguez@urv.cat
    Identificador del autor: 0000-0002-9082-7647
    Fecha de alta del registro: 2024-10-26
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Filomat. 31 (20): 6515-6528
    Referencia de l'ítem segons les normes APA: Ramezani, F; Rodriguez-Bazan, E D; Rodriguez-Velazquez, J A (2017). On the Roman domination number of generalized Sierpiński graphs. Filomat, 31(20), 6515-6528. DOI: 10.2298/FIL1720515R
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2017
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Mathematics,Mathematics (Miscellaneous),Mathematics, Applied
    Sierpiński graph
    Roman domination number
    Generalized sierpiński graph
    Mathematics, applied
    Mathematics (miscellaneous)
    Mathematics (all)
    Mathematics
    General mathematics
    Engenharias iii
    Economia
    Ciências agrárias i
  • Documentos:

  • Cerca a google

    Search to google scholar