Autor según el artículo: Millan P; Molina C; Dimogerontakis E; Navarro L; Meseguer R; Braem B; Blondia C
Departamento: Enginyeria Informàtica i Matemàtiques
Autor/es de la URV: Millán Marco, Pedro / MOLINA LLAURADÓ, CRISTINA MISERICÒRDIA
Palabras clave: Time-series analysis End-to-end quality prediction Community networks
Resumen: © 2015 IEEE. Community networks are an emergent model with mottos like 'a free net for everyone is possible' or 'don't buy the network, be the network'. Their social impact is measurable, as the community is provided with the right and opportunity of communication. The combination of wired and wireless links in these networks, and the unreliable nature of the wireless medium, poses several challenges to the routing protocol. End-to End quality tracking helps the routing layer to select paths that maximize the delivery rate and minimize traffic congestion. We believe that End-to-End quality prediction can be a technique that surpasses End-to-End quality tracking by foreseeing which paths are more likely to change quality. In this work, we focus on End-to-End quality prediction by means of time-series analysis. We apply this prediction technique in the routing layer of large scale, distributed, and decentralized networks. We demonstrate that it is possible to accurately predict End-to-End Quality with an average Mean Absolute Error of just 2.4%. Particularly, we analyze the path properties and path ETX behavior to identify the best prediction algorithm. Moreover, we analyze the EtEQ prediction accuracy some steps ahead in the future and also its dependency of the time of the day.
Áreas temáticas: Electrical and electronic engineering Artificial intelligence
ISSN: 9781467381031
Direcció de correo del autor: pere.millan@urv.cat
Identificador del autor: 0000-0002-4132-7099
Fecha de alta del registro: 2024-10-12
URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
Referencia al articulo segun fuente origial: Proceedings - 2015 International Conference On Future Internet Of Things And Cloud, Ficloud 2015 And 2015 International Conference On Open And Big Data, Obd 2015. 794-799
Referencia de l'ítem segons les normes APA: Millan P; Molina C; Dimogerontakis E; Navarro L; Meseguer R; Braem B; Blondia C (2015). Tracking and Predicting End-to-End Quality in Wireless Community Networks.
DOI del artículo: 10.1109/FiCloud.2015.96
Entidad: Universitat Rovira i Virgili
Año de publicación de la revista: 2015
Tipo de publicación: Proceedings Paper