Autor según el artículo: Hoang MTV, Irinyi L, Chen SCA, Sorrell TC,, Meyer W ISHAM Barcoding of Medical Fungi Working Group
Departamento: Ciències Mèdiques Bàsiques
Autor/es de la URV: Guarro Artigas, Josep
Palabras clave: dual barcoding system fungal dna barcoding identification internal transcribed spacer region invasive fungal diseases isham barcoding database Dual barcoding system Fungal dna barcoding Identification Internal transcribed spacer region Invasive fungal diseases Isham barcoding database Translational elongation factor 1? Translational elongation factor 1α
Resumen: Copyright © 2019 Hoang, Irinyi, Chen, Sorrell, the ISHAM Barcoding of Medical Fungi Working Group and Meyer. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Invasive fungal infections, such as aspergillosis, candidiasis, and cryptococcosis, have significantly increased among immunocompromised people. To tackle these infections the first and most decisive step is the accurate identification of the causal pathogen. Routine identification of invasive fungal infections has progressed away from culture-dependent methods toward molecular techniques, including DNA barcoding, a highly efficient and widely used diagnostic technique. Fungal DNA barcoding previously relied on a single barcoding region, the internal transcribed spacer (ITS) region. However, this allowed only for 75% of all fungi to be correctly identified. As such, the translational elongation factor 1α (TEF1α) was recently introduced as the secondary barcode region to close the gap. Both loci together form the dual fungal DNA barcoding scheme. As a result, the ISHAM Barcoding Database has been expanded to include sequences for both barcoding regions to enable practical implementation of the dual barcoding scheme into clinical practice. The present study investigates the impact of the secondary barcode on the identification of clinically important fungal taxa, that have been demonstrated to cause severe invasive disease. Analysis of the barcoding regions was performed using barcoding gap analysis based on the genetic distances generated with the Kimura 2-parameter model. The secondary barcode demonstrated an improvement in identification for all taxa that were unidentifiable with the primary barcode, and when combined with the primary barcode ensured accurate identification for all taxa analyzed, making DNA barcoding an important, efficient and reliable addition to the diagnostic toolset of invasive fungal infections.
Áreas temáticas: Astronomia / física Biodiversidade Biotecnología Ciência da computação Ciência de alimentos Ciências agrárias i Ciências ambientais Ciências biológicas i Ciências biológicas ii Ciências biológicas iii Economia Engenharias i Engenharias ii Engenharias iii Ensino Farmacia Geociências Geografía Interdisciplinar Matemática / probabilidade e estatística Materiais Medicina i Medicina ii Medicina veterinaria Microbiology Microbiology (medical) Nutrição Odontología Química Saúde coletiva Zootecnia / recursos pesqueiros
Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
Direcció de correo del autor: josep.guarro@urv.cat
ISSN: 1664302X
Identificador del autor: 0000-0002-7839-7568
Fecha de alta del registro: 2023-02-18
Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
Enlace a la fuente original: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2019.01647/full
Referencia al articulo segun fuente origial: Frontiers In Microbiology. 10 (JULY): 1647-
Referencia de l'ítem segons les normes APA: Hoang MTV, Irinyi L, Chen SCA, Sorrell TC,, Meyer W ISHAM Barcoding of Medical Fungi Working Group (2019). Dual DNA barcoding for the molecular identification of the agents of invasive fungal infections. Frontiers In Microbiology, 10(JULY), 1647-. DOI: 10.3389/fmicb.2019.01647
URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
DOI del artículo: 10.3389/fmicb.2019.01647
Entidad: Universitat Rovira i Virgili
Año de publicación de la revista: 2019
Tipo de publicación: Journal Publications