Articles producció científica> Enginyeria Informàtica i Matemàtiques

Tempered monoids of real numbers, the golden fractal monoid, and the well-tempered harmonic semigroup

  • Datos identificativos

    Identificador: imarina:6003787
  • Autores:

    Bras-Amoros, Maria
  • Otros:

    Autor según el artículo: Bras-Amoros, Maria;
    Departamento: Enginyeria Informàtica i Matemàtiques
    Autor/es de la URV: Bras Amoros, Maria
    Palabras clave: Tempered monoid Numerical semigroup Musical harmonics Music Monoids Logarithm Increasing enumeration Golden ratio Fractal Equal temperament
    Resumen: This paper deals with the algebraic structure of the sequence of harmonics when combined with equal temperaments. Fractals and the golden ratio appear surprisingly on the way. The sequence of physical harmonics is an increasingly enumerable sub-monoid of (R+,+) whose pairs of consecutive terms get arbitrarily close as they grow. These properties suggest the definition of a new mathematical object which we denote a tempered monoid. Mapping the elements of the tempered monoid of physical harmonics from R to N may be considered tantamount to defining equal temperaments. The number of equal parts of the octave in an equal temperament corresponds to the multiplicity of the related numerical semigroup. Analyzing the sequence of musical harmonics we derive two important properties that tempered monoids may have: that of being product-compatible and that of being fractal. We demonstrate that, up to normalization, there is only one product-compatible tempered monoid, which is the logarithmic monoid, and there is only one nonbisectional fractal monoid which is generated by the golden ratio. The example of half-closed cylindrical pipes imposes a third property to the sequence of musical harmonics, the so-called odd-filterability property. We prove that the maximum number of equal divisions of the octave such that the discretizations of the golden fractal monoid and the logarithmic monoid coincide, and such that the discretization is odd-filterable is 12. This is nothing else but the number of equal divisions of the octave in classical Western music.
    Áreas temáticas: Mathematics Matemática / probabilidade e estatística Engenharias iv Algebra and number theory
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 00371912
    Direcció de correo del autor: maria.bras@urv.cat
    Identificador del autor: 0000-0002-3481-004X
    Fecha de alta del registro: 2023-02-18
    Versión del articulo depositado: info:eu-repo/semantics/acceptedVersion
    Enlace a la fuente original: https://link.springer.com/article/10.1007/s00233-019-10059-4
    Referencia al articulo segun fuente origial: Semigroup Forum. 99 (2): 496-516
    Referencia de l'ítem segons les normes APA: Bras-Amoros, Maria; (2019). Tempered monoids of real numbers, the golden fractal monoid, and the well-tempered harmonic semigroup. Semigroup Forum, 99(2), 496-516. DOI: 10.1007/s00233-019-10059-4
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    DOI del artículo: 10.1007/s00233-019-10059-4
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2019
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Algebra and Number Theory,Mathematics
    Tempered monoid
    Numerical semigroup
    Musical harmonics
    Music
    Monoids
    Logarithm
    Increasing enumeration
    Golden ratio
    Fractal
    Equal temperament
    Mathematics
    Matemática / probabilidade e estatística
    Engenharias iv
    Algebra and number theory
  • Documentos:

  • Cerca a google

    Search to google scholar