Articles producció científica> Medicina i Cirurgia

Gestational diabetes impacts fetal precursor cell responses with potential consequences for offspring

  • Datos identificativos

    Identificador: imarina:6019774
    Autores:
    Algaba-Chueca, FranciscoMaymo-Masip, ElsaEjarque, MiriamBallesteros, MonicaLlaurado, GemmaLopez, CarlosGuarque, AlbertSerena, CarolinaMartinez-Guasch, LaiaGutierrez, CristinaBosch, RamonVendrell, JoanMegia, AnaFernandez-Veledo, Sonia
    Resumen:
    © 2019 The Authors. STEM CELLS TRANSLATIONAL MEDICINE published by Wiley Periodicals, Inc. on behalf of AlphaMed Press Fetal programming has been proposed as a key mechanism underlying the association between intrauterine exposure to maternal diabetes and negative health outcomes in offspring. To determine whether gestational diabetes mellitus (GDM) might leave an imprint in fetal precursors of the amniotic membrane and whether it might be related to adverse outcomes in offspring, a prospective case-control study was conducted, in which amniotic mesenchymal stem cells (AMSCs) and resident macrophages were isolated from pregnant patients, with either GDM or normal glucose tolerance, scheduled for cesarean section. After characterization, functional characteristics of AMSCs were analyzed and correlated with anthropometrical and clinical variables from both mother and offspring. GDM-derived AMSCs displayed an impaired proliferation and osteogenic potential when compared with control cells, accompanied by superior invasive and chemotactic capacity. The expression of genes involved in the inflammatory response (TNFα, MCP-1, CD40, and CTSS) was upregulated in GDM-derived AMSCs, whereas anti-inflammatory IL-33 was downregulated. Macrophages isolated from the amniotic membrane of GDM mothers consistently showed higher expression of MCP-1 as well. In vitro studies in which AMSCs from healthy control women were exposed to hyperglycemia, hyperinsulinemia, and palmitic acid confirmed these results. Finally, genes involved in the inflammatory response were associated with maternal insulin sensitivity and prepregnancy body mass index, as well as with fetal metabolic parameters. These results suggest that the GDM environment could program stem cells and subsequently favor metabolic dy
  • Otros:

    Autor según el artículo: Algaba-Chueca, Francisco; Maymo-Masip, Elsa; Ejarque, Miriam; Ballesteros, Monica; Llaurado, Gemma; Lopez, Carlos; Guarque, Albert; Serena, Carolina; Martinez-Guasch, Laia; Gutierrez, Cristina; Bosch, Ramon; Vendrell, Joan; Megia, Ana; Fernandez-Veledo, Sonia
    Departamento: Bioquímica i Biotecnologia Ciències Mèdiques Bàsiques Medicina i Cirurgia
    Autor/es de la URV: Ballesteros Pérez, Monica / Bosch Príncep, Ramon / Fernandez Veledo, Sonia / Guarque Rus, Albert / GUTIÉRREZ FORNÉS, CRISTINA / Lopez Pablo, Carlos / Martínez Guasch, Laia / Maymo Masip, Elsa / Megía Colet, Ana / Serena Perelló, Carolina / Vendrell Ortega, Juan José
    Palabras clave: Stem cells Programming Pregnancy Placenta Offspring Obesity Metabolism Mesenchymal stromal cells Mellitus Insulin-resistance Immunophenotyping Humans Glucose Gestational diabetes Fetal precursors Fetal development Female Erythroid precursor cells Differentiation Diabetes, gestational Cell proliferation Alters Adult programming placenta offspring gestational diabetes fetal precursors
    Resumen: © 2019 The Authors. STEM CELLS TRANSLATIONAL MEDICINE published by Wiley Periodicals, Inc. on behalf of AlphaMed Press Fetal programming has been proposed as a key mechanism underlying the association between intrauterine exposure to maternal diabetes and negative health outcomes in offspring. To determine whether gestational diabetes mellitus (GDM) might leave an imprint in fetal precursors of the amniotic membrane and whether it might be related to adverse outcomes in offspring, a prospective case-control study was conducted, in which amniotic mesenchymal stem cells (AMSCs) and resident macrophages were isolated from pregnant patients, with either GDM or normal glucose tolerance, scheduled for cesarean section. After characterization, functional characteristics of AMSCs were analyzed and correlated with anthropometrical and clinical variables from both mother and offspring. GDM-derived AMSCs displayed an impaired proliferation and osteogenic potential when compared with control cells, accompanied by superior invasive and chemotactic capacity. The expression of genes involved in the inflammatory response (TNFα, MCP-1, CD40, and CTSS) was upregulated in GDM-derived AMSCs, whereas anti-inflammatory IL-33 was downregulated. Macrophages isolated from the amniotic membrane of GDM mothers consistently showed higher expression of MCP-1 as well. In vitro studies in which AMSCs from healthy control women were exposed to hyperglycemia, hyperinsulinemia, and palmitic acid confirmed these results. Finally, genes involved in the inflammatory response were associated with maternal insulin sensitivity and prepregnancy body mass index, as well as with fetal metabolic parameters. These results suggest that the GDM environment could program stem cells and subsequently favor metabolic dysfunction later in life. Fetal adaptive programming in the setting of GDM might have a direct negative impact on insulin resistance of offspring.
    Áreas temáticas: Medicine (miscellaneous) Medicine (all) Medicina ii Medicina i General medicine Developmental biology Ciências biológicas iii Ciências biológicas ii Cell biology Cell & tissue engineering
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 21576564
    Direcció de correo del autor: albert.guarque@urv.cat laia.martinez@urv.cat ramon.bosch@urv.cat carlos.lopez@urv.cat carolina.serena@urv.cat elsa.maymo@urv.cat laia.martinez@urv.cat ramon.bosch@urv.cat monica.ballesteros@urv.cat sonia.fernandez@urv.cat ana.megia@urv.cat juanjose.vendrell@urv.cat
    Identificador del autor: 0000-0003-1248-3065 0000-0002-9133-3120 0000-0003-2906-3788 0000-0002-5101-9452 0000-0002-6994-6115
    Fecha de alta del registro: 2024-10-12
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Enlace a la fuente original: https://stemcellsjournals.onlinelibrary.wiley.com/doi/full/10.1002/sctm.19-0242
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Stem Cells Translational Medicine. 9 (3): 351-363
    Referencia de l'ítem segons les normes APA: Algaba-Chueca, Francisco; Maymo-Masip, Elsa; Ejarque, Miriam; Ballesteros, Monica; Llaurado, Gemma; Lopez, Carlos; Guarque, Albert; Serena, Carolina; (2020). Gestational diabetes impacts fetal precursor cell responses with potential consequences for offspring. Stem Cells Translational Medicine, 9(3), 351-363. DOI: 10.1002/sctm.19-0242
    DOI del artículo: 10.1002/sctm.19-0242
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2020
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Cell & Tissue Engineering,Cell Biology,Developmental Biology,Medicine (Miscellaneous)
    Stem cells
    Programming
    Pregnancy
    Placenta
    Offspring
    Obesity
    Metabolism
    Mesenchymal stromal cells
    Mellitus
    Insulin-resistance
    Immunophenotyping
    Humans
    Glucose
    Gestational diabetes
    Fetal precursors
    Fetal development
    Female
    Erythroid precursor cells
    Differentiation
    Diabetes, gestational
    Cell proliferation
    Alters
    Adult
    programming
    placenta
    offspring
    gestational diabetes
    fetal precursors
    Medicine (miscellaneous)
    Medicine (all)
    Medicina ii
    Medicina i
    General medicine
    Developmental biology
    Ciências biológicas iii
    Ciências biológicas ii
    Cell biology
    Cell & tissue engineering
  • Documentos:

  • Cerca a google

    Search to google scholar