Articles producció científica> Enginyeria Electrònica, Elèctrica i Automàtica

Supported ultra-thin alumina membranes with graphene as efficient interference enhanced raman scattering platforms for sensing

  • Datos identificativos

    Identificador: imarina:6285357
    Autores:
    Aguilar-Pujol, MontserratRamirez-Jimenez, RafaelXifre-Perez, ElisabetCortijo-Campos, SandraBartolome, JavierMarsal, Lluis Fde Andres, Alicia
    Resumen:
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. T. The detection of Raman signals from diluted molecules or biomaterials in complex media is still a challenge. Besides the widely studied Raman enhancement by nanoparticle plasmons, interference mechanisms provide an interesting option. A novel approach for amplification platforms based on supported thin alumina membranes was designed and fabricated to optimize the interference processes. The dielectric layer is the extremely thin alumina membrane itself and, its metallic aluminum support, the reflecting medium. A CVD (chemical vapor deposition) singlelayer graphene is transferred on the membrane to serve as substrate to deposit the analyte. Experimental results and simulations of the interference processes were employed to determine the relevant parameters of the structure to optimize the Raman enhancement factor (E.F.). Highly homogeneous E.F. over the platform surface are obtained, typically 370 ± (5%), for membranes with ~100 nm pore depth, ~18 nm pore diameter and the complete elimination of the Al2O3 bottom barrier layer. The combined surface enhanced Raman scattering (SERS) and interference amplification is also demonstrated by depositing ultra-small silver nanoparticles. This new approach to amplify the Raman signal of analytes is easily obtained, low-cost and robust with useful enhancement factors (~400) and allows only interference or combined enhancement mechanisms, depending on the analyte requirements.
  • Otros:

    Autor según el artículo: Aguilar-Pujol, Montserrat; Ramirez-Jimenez, Rafael; Xifre-Perez, Elisabet; Cortijo-Campos, Sandra; Bartolome, Javier; Marsal, Lluis F; de Andres, Alicia
    Departamento: Enginyeria Electrònica, Elèctrica i Automàtica
    Autor/es de la URV: Marsal Garví, Luis Francisco / Xifré Pérez, Elisabet
    Palabras clave: Surface Sers Sem Optical simulations Nanoparticles Interference Graphene Enhanced raman scattering Alumina membrane Afm sem nanoparticles interference graphene enhanced raman scattering alumina membrane afm
    Resumen: © 2020 by the authors. Licensee MDPI, Basel, Switzerland. T. The detection of Raman signals from diluted molecules or biomaterials in complex media is still a challenge. Besides the widely studied Raman enhancement by nanoparticle plasmons, interference mechanisms provide an interesting option. A novel approach for amplification platforms based on supported thin alumina membranes was designed and fabricated to optimize the interference processes. The dielectric layer is the extremely thin alumina membrane itself and, its metallic aluminum support, the reflecting medium. A CVD (chemical vapor deposition) singlelayer graphene is transferred on the membrane to serve as substrate to deposit the analyte. Experimental results and simulations of the interference processes were employed to determine the relevant parameters of the structure to optimize the Raman enhancement factor (E.F.). Highly homogeneous E.F. over the platform surface are obtained, typically 370 ± (5%), for membranes with ~100 nm pore depth, ~18 nm pore diameter and the complete elimination of the Al2O3 bottom barrier layer. The combined surface enhanced Raman scattering (SERS) and interference amplification is also demonstrated by depositing ultra-small silver nanoparticles. This new approach to amplify the Raman signal of analytes is easily obtained, low-cost and robust with useful enhancement factors (~400) and allows only interference or combined enhancement mechanisms, depending on the analyte requirements.
    Áreas temáticas: Physics, applied Nanoscience & nanotechnology Materials science, multidisciplinary Materials science (miscellaneous) Materials science (all) General materials science General chemical engineering Engenharias ii Chemistry, multidisciplinary Chemical engineering (miscellaneous) Chemical engineering (all)
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 2079-4991
    Direcció de correo del autor: elisabet.xifre@urv.cat lluis.marsal@urv.cat
    Identificador del autor: 0000-0001-6072-9889 0000-0002-5976-1408
    Fecha de alta del registro: 2024-10-12
    Volumen de revista: 10
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Nanomaterials. 10 (5): 830-
    Referencia de l'ítem segons les normes APA: Aguilar-Pujol, Montserrat; Ramirez-Jimenez, Rafael; Xifre-Perez, Elisabet; Cortijo-Campos, Sandra; Bartolome, Javier; Marsal, Lluis F; de Andres, Alic (2020). Supported ultra-thin alumina membranes with graphene as efficient interference enhanced raman scattering platforms for sensing. Nanomaterials, 10(5), 830-. DOI: 10.3390/nano10050830
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2020
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Chemical Engineering (Miscellaneous),Chemistry, Multidisciplinary,Materials Science (Miscellaneous),Materials Science, Multidisciplinary,Nanoscience & Nanotechnology,Physics, Applied
    Surface
    Sers
    Sem
    Optical simulations
    Nanoparticles
    Interference
    Graphene
    Enhanced raman scattering
    Alumina membrane
    Afm
    sem
    nanoparticles
    interference
    graphene
    enhanced raman scattering
    alumina membrane
    afm
    Physics, applied
    Nanoscience & nanotechnology
    Materials science, multidisciplinary
    Materials science (miscellaneous)
    Materials science (all)
    General materials science
    General chemical engineering
    Engenharias ii
    Chemistry, multidisciplinary
    Chemical engineering (miscellaneous)
    Chemical engineering (all)
  • Documentos:

  • Cerca a google

    Search to google scholar