Articles producció científica> Bioquímica i Biotecnologia

Quinolones modulate ghrelin receptor signaling: Potential for a novel small molecule scaffold in the treatment of cachexia

  • Datos identificativos

    Identificador: imarina:6389430
    Autores:
    Torres-Fuentes CPastor-Cavada ECano RKandil DShanahan RJuan RShaban HMcGlacken GPSchellekens H
    Resumen:
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. Cachexia is a metabolic wasting disorder characterized by progressive weight loss, muscle atrophy, fatigue, weakness, and appetite loss. Cachexia is associated with almost all major chronic illnesses including cancer, heart failure, obstructive pulmonary disease, and kidney disease and significantly impedes treatment outcome and therapy tolerance, reducing physical function and increasing mortality. Current cachexia treatments are limited and new pharmacological strategies are needed. Agonists for the growth hormone secretagogue (GHS-R1a), or ghrelin receptor, prospectively regulate the central regulation of appetite and growth hormone secretion, and therefore have tremendous potential as cachexia therapeutics. Non-peptide GHS-R1a agonists are of particular interest, especially given the high gastrointestinal degradation of peptide-based structures, including that of the endogenous ligand, ghrelin, which has a half-life of only 30 min. However, few compounds have been reported in the literature as non-peptide GHS-R1a agonists. In this paper, we investigate the in vitro potential of quinolone compounds to modulate the GHS-R1a in both transfected human cells and mouse hypothalamic cells. These chemically synthesized compounds demonstrate a promising potential as GHS-R1a agonists, shown by an increased intracellular calcium influx. Further studies are now warranted to substantiate and exploit the potential of these novel quinolone-based compounds as orexigenic therapeutics in conditions of cachexia and other metabolic and eating disorders.
  • Otros:

    Autor según el artículo: Torres-Fuentes C; Pastor-Cavada E; Cano R; Kandil D; Shanahan R; Juan R; Shaban H; McGlacken GP; Schellekens H
    Departamento: Bioquímica i Biotecnologia
    Autor/es de la URV: Torres Fuentes, Cristina
    Palabras clave: Quinolones Japanese patients Ghs-r1a receptor Ghs-r1a Ghrelin G-protein Food-intake Double-blind Cell lung-cancer Cachexia C-3 position Bias Anamorelin ono-7643 Agonist ghs-r1a ghrelin cachexia
    Resumen: © 2018 by the authors. Licensee MDPI, Basel, Switzerland. Cachexia is a metabolic wasting disorder characterized by progressive weight loss, muscle atrophy, fatigue, weakness, and appetite loss. Cachexia is associated with almost all major chronic illnesses including cancer, heart failure, obstructive pulmonary disease, and kidney disease and significantly impedes treatment outcome and therapy tolerance, reducing physical function and increasing mortality. Current cachexia treatments are limited and new pharmacological strategies are needed. Agonists for the growth hormone secretagogue (GHS-R1a), or ghrelin receptor, prospectively regulate the central regulation of appetite and growth hormone secretion, and therefore have tremendous potential as cachexia therapeutics. Non-peptide GHS-R1a agonists are of particular interest, especially given the high gastrointestinal degradation of peptide-based structures, including that of the endogenous ligand, ghrelin, which has a half-life of only 30 min. However, few compounds have been reported in the literature as non-peptide GHS-R1a agonists. In this paper, we investigate the in vitro potential of quinolone compounds to modulate the GHS-R1a in both transfected human cells and mouse hypothalamic cells. These chemically synthesized compounds demonstrate a promising potential as GHS-R1a agonists, shown by an increased intracellular calcium influx. Further studies are now warranted to substantiate and exploit the potential of these novel quinolone-based compounds as orexigenic therapeutics in conditions of cachexia and other metabolic and eating disorders.
    Áreas temáticas: Zootecnia / recursos pesqueiros Spectroscopy Saúde coletiva Química Psicología Physical and theoretical chemistry Organic chemistry Odontología Nutrição Molecular biology Medicine (miscellaneous) Medicina veterinaria Medicina iii Medicina ii Medicina i Materiais Interdisciplinar Inorganic chemistry Geociências Farmacia Engenharias iv Engenharias ii Engenharias i Educação física Computer science applications Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Ciência da computação Chemistry, multidisciplinary Catalysis Biotecnología Biodiversidade Biochemistry & molecular biology Astronomia / física
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 14220067
    Direcció de correo del autor: cristina.torres@urv.cat
    Identificador del autor: 0000-0002-2917-6910
    Fecha de alta del registro: 2024-09-07
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: International Journal Of Molecular Sciences. 19 (6):
    Referencia de l'ítem segons les normes APA: Torres-Fuentes C; Pastor-Cavada E; Cano R; Kandil D; Shanahan R; Juan R; Shaban H; McGlacken GP; Schellekens H (2018). Quinolones modulate ghrelin receptor signaling: Potential for a novel small molecule scaffold in the treatment of cachexia. International Journal Of Molecular Sciences, 19(6), -. DOI: 10.3390/ijms19061605
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2018
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Biochemistry & Molecular Biology,Catalysis,Chemistry, Multidisciplinary,Computer Science Applications,Inorganic Chemistry,Medicine (Miscellaneous),Molecular Biology,Organic Chemistry,Physical and Theoretical Chemistry,Spectroscopy
    Quinolones
    Japanese patients
    Ghs-r1a receptor
    Ghs-r1a
    Ghrelin
    G-protein
    Food-intake
    Double-blind
    Cell lung-cancer
    Cachexia
    C-3 position
    Bias
    Anamorelin ono-7643
    Agonist
    ghs-r1a
    ghrelin
    cachexia
    Zootecnia / recursos pesqueiros
    Spectroscopy
    Saúde coletiva
    Química
    Psicología
    Physical and theoretical chemistry
    Organic chemistry
    Odontología
    Nutrição
    Molecular biology
    Medicine (miscellaneous)
    Medicina veterinaria
    Medicina iii
    Medicina ii
    Medicina i
    Materiais
    Interdisciplinar
    Inorganic chemistry
    Geociências
    Farmacia
    Engenharias iv
    Engenharias ii
    Engenharias i
    Educação física
    Computer science applications
    Ciências biológicas iii
    Ciências biológicas ii
    Ciências biológicas i
    Ciências ambientais
    Ciências agrárias i
    Ciência de alimentos
    Ciência da computação
    Chemistry, multidisciplinary
    Catalysis
    Biotecnología
    Biodiversidade
    Biochemistry & molecular biology
    Astronomia / física
  • Documentos:

  • Cerca a google

    Search to google scholar