Autor según el artículo: Kathir RK; De Graaf C; Broer R; Havenith RWA
Departamento: Química Física i Inorgànica
Autor/es de la URV: De Graaf, Cornelis
Palabras clave: Valence-bond theory Transport Singlet fission Pentacene Matrix-elements Hole states Hartree-fock theory Exciton Electronic-structure Charge-transfer
Resumen: © 2020 American Chemical Society. Electron and charge transfers are part of many vital processes in nature and technology. Ab initio descriptions of these processes provide useful insights that can be utilized for applications. A combination of the embedded cluster material model and nonorthogonal configuration interaction (NOCI), in which the cluster wave functions are expanded in many-electron basis functions (MEBFs) consisting of spin-adapted, antisymmetrized products of multiconfigurational wave functions of fragments (which are usually molecules) in the cluster, appears to provide a compromise between accuracy and calculation time. Additional advantages of this NOCI-Fragments approach are the chemically convenient interpretation of the wave function in terms of molecular states, and the direct accessibility of electronic coupling between diabatic states to describe energy and electron transfer processes. Bottlenecks in this method are the large number of two-electron integrals that have to be handled for the calculation of an electronic coupling matrix element and the enormous number of matrix elements over determinant pairs that have to be evaluated for the calculation of one matrix element between the MEBFs. We show here how we created a reduced common molecular orbital basis that is utilized to significantly reduce the number of two-electron integrals that need to be handled. The results obtained with this basis do not show any loss of accuracy in relevant quantities like electronic couplings and vertical excitation energies. We also show a significant reduction in computation time without loss in accuracy when matrix elements over determinant pairs with small weights are neglected in the NOCI. These improvements in the methodology render NOCI-Fragments to be also applicable to treat clusters of larger molecular systems with larger atomic basis sets and larger active spaces, as the computation time becomes dependent on the number of occupied orbitals and less dependent on the size of the active space.
Áreas temáticas: Química Physics, atomic, molecular & chemical Physical and theoretical chemistry Medicina i Materiais Matemática / probabilidade e estatística Interdisciplinar Farmacia Engenharias iii Computer science applications Ciências biológicas ii Ciências biológicas i Ciência da computação Chemistry, physical Chemistry, multidisciplinary Biotecnología Astronomia / física
Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
ISSN: 15499618
Direcció de correo del autor: coen.degraaf@urv.cat
Identificador del autor: 0000-0001-8114-6658
Fecha de alta del registro: 2023-02-26
Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
Referencia al articulo segun fuente origial: Journal Of Chemical Theory And Computation. 16 (5): 2941-2951
Referencia de l'ítem segons les normes APA: Kathir RK; De Graaf C; Broer R; Havenith RWA (2020). Reduced Common Molecular Orbital Basis for Nonorthogonal Configuration Interaction. Journal Of Chemical Theory And Computation, 16(5), 2941-2951. DOI: 10.1021/acs.jctc.9b01144
URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
Entidad: Universitat Rovira i Virgili
Año de publicación de la revista: 2020
Tipo de publicación: Journal Publications