Articles producció científica> Gestió d'Empreses

Document summarization using a structural metrics based representation

  • Datos identificativos

    Identificador: imarina:6494755
    Autores:
    Villa-Monte ALanzarini LCorvi JBariviera AF
    Resumen:
    © 2020 - IOS Press and the authors. All rights reserved. Currently, each person produces 1.7MB of information every second in different formats. However, the vast majority of information is text. This has increased the interest to study techniques to automate the identification of the relevant portions of text documents in order to offer as a result an automatic summary. This article presents a technique to extract the most representative sentences of a document taking into account by the user's criteria. These criteria are learned using a neural network, from a minimum set of documents whose sentences have been rated by the user in terms of importance. To verify the performance of the proposed methodology, we used 220 scientific articles from the PLOS Medicine journal published between 2004 and 2016. The results obtained have been very satisfactory.
  • Otros:

    Autor según el artículo: Villa-Monte A; Lanzarini L; Corvi J; Bariviera AF
    Departamento: Gestió d'Empreses
    Autor/es de la URV: Fernández Bariviera, Aurelio
    Palabras clave: Text summarization Sentence scoring Neural networks Feature selection Extractive summaries
    Resumen: © 2020 - IOS Press and the authors. All rights reserved. Currently, each person produces 1.7MB of information every second in different formats. However, the vast majority of information is text. This has increased the interest to study techniques to automate the identification of the relevant portions of text documents in order to offer as a result an automatic summary. This article presents a technique to extract the most representative sentences of a document taking into account by the user's criteria. These criteria are learned using a neural network, from a minimum set of documents whose sentences have been rated by the user in terms of importance. To verify the performance of the proposed methodology, we used 220 scientific articles from the PLOS Medicine journal published between 2004 and 2016. The results obtained have been very satisfactory.
    Áreas temáticas: Statistics and probability Interdisciplinar General engineering Ensino Engineering (miscellaneous) Engineering (all) Engenharias iv Engenharias iii Economia Computer science, artificial intelligence Ciências ambientais Ciência da computação Biotecnología Artificial intelligence Administração pública e de empresas, ciências contábeis e turismo
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 10641246
    Direcció de correo del autor: aurelio.fernandez@urv.cat
    Identificador del autor: 0000-0003-1014-1010
    Fecha de alta del registro: 2024-04-27
    Versión del articulo depositado: info:eu-repo/semantics/acceptedVersion
    Referencia al articulo segun fuente origial: Journal Of Intelligent & Fuzzy Systems. 38 (5): 5579-5588
    Referencia de l'ítem segons les normes APA: Villa-Monte A; Lanzarini L; Corvi J; Bariviera AF (2020). Document summarization using a structural metrics based representation. Journal Of Intelligent & Fuzzy Systems, 38(5), 5579-5588. DOI: 10.3233/JIFS-179648
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2020
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Artificial Intelligence,Computer Science, Artificial Intelligence,Engineering (Miscellaneous),Statistics and Probability
    Text summarization
    Sentence scoring
    Neural networks
    Feature selection
    Extractive summaries
    Statistics and probability
    Interdisciplinar
    General engineering
    Ensino
    Engineering (miscellaneous)
    Engineering (all)
    Engenharias iv
    Engenharias iii
    Economia
    Computer science, artificial intelligence
    Ciências ambientais
    Ciência da computação
    Biotecnología
    Artificial intelligence
    Administração pública e de empresas, ciências contábeis e turismo
  • Documentos:

  • Cerca a google

    Search to google scholar