Autor según el artículo: Cabrera Martinez, Abel; Alberto Rodriguez-Velazquez, Juan
Departamento: Enginyeria Informàtica i Matemàtiques
Autor/es de la URV: CABRERA MARTÍNEZ, ABEL / Rodríguez Velázquez, Juan Alberto
Palabras clave: Total weak roman domination Total domination Secure total domination Lexicographic product Italian domination total domination secure total domination roman lexicographic product
Resumen: © (V1 â V2) such that the function f′, defined by f′(v) = 1, f′(u) = f(u)-1 and f′(x) = f(x) whenever x â V (G) \ {u, v}, is a total dominating function as well. If f is a total weak Roman dominating function and V2 = â, then we say that f is a secure total dominating function. The weight of a function f is defined to be ω(f) = ςvâV(G) f(v). The total weak Roman domination number (secure total domination number) of a graph G is the minimum weight among all total weak Roman dominating functions (secure total dominating functions) on G. In this article, we show that these two parameters coincide for lexicographic product graphs. Furthermore, we obtain closed formulae and tight bounds for these parameters in terms of invariants of the factor graphs involved in the product. Given a graph G with vertex set V (G), a function f: V (G) → {0, 1, 2} is said to be a total dominating function if ςuâN(v) f(u) > 0 for every v â V (G), where N(v) denotes the open neighbourhood of v. Let Vi = {x â V (G): F(x) = i}. A total dominating function f is a total weak Roman dominating function if for every vertex v â V0 there exists a vertex u â N(v) â.
Áreas temáticas: Mathematics Matemática / probabilidade e estatística Discrete mathematics and combinatorics Ciência da computação Applied mathematics
Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
Direcció de correo del autor: juanalberto.rodriguez@urv.cat
Identificador del autor: 0000-0002-9082-7647
Fecha de alta del registro: 2024-10-26
Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
Referencia al articulo segun fuente origial: Discussiones Mathematicae Graph Theory. 42 (3): 967-984
Referencia de l'ítem segons les normes APA: Cabrera Martinez, Abel; Alberto Rodriguez-Velazquez, Juan (2022). Total Protection of Lexicographic Product Graphs. Discussiones Mathematicae Graph Theory, 42(3), 967-984. DOI: 10.7151/dmgt.2318
Entidad: Universitat Rovira i Virgili
Año de publicación de la revista: 2022
Tipo de publicación: Journal Publications