Articles producció científica> Bioquímica i Biotecnologia

Transcriptomic insights into the effect of melatonin in saccharomyces cerevisiae in the presence and absence of oxidative stress

  • Datos identificativos

    Identificador: imarina:8889795
    Autores:
    Sunyer-Figueres, MerceVazquez, JenniferMas, AlbertTorija, Maria-JesusBeltran, Gemma
    Resumen:
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Melatonin is a ubiquitous indolamine that plays important roles in various aspects of biological processes in mammals. In Saccharomyces cerevisiae, melatonin has been reported to exhibit antioxidant properties and to modulate the expression of some genes involved in endogenous defense systems. The aim of this study was to elucidate the role of supplemented melatonin at the transcriptional level in S. cerevisiae in the presence and absence of oxidative stress. This was achieved by exposing yeast cells pretreated with different melatonin concentrations to hydrogen peroxide and assessing the entry of melatonin into the cell and the yeast response at the transcriptional level (by microarray and qPCR analyses) and the physiological level (by analyzing changes in the lipid composition and mitochondrial activity). We found that exogenous melatonin crossed cellular membranes at nanomolar concentrations and modulated the expression of many genes, mainly downregulating the expression of mitochondrial genes in the absence of oxidative stress, triggering a hypoxia-like response, and upregulating them under stress, mainly the cytochrome complex and electron transport chain. Other categories that were enriched by the effect of melatonin were related to transport, antioxidant activity, signaling, and carbohydrate and lipid metabolism. The overall results suggest that melatonin is able to reprogram the cellular machinery to achieve tolerance to oxidative stress.
  • Otros:

    Autor según el artículo: Sunyer-Figueres, Merce; Vazquez, Jennifer; Mas, Albert; Torija, Maria-Jesus; Beltran, Gemma
    Departamento: Bioquímica i Biotecnologia
    Autor/es de la URV: Beltran Casellas, Gemma / Mas Baron, Alberto / Sunyer Figueres, Mercè / Torija Martínez, María Jesús
    Palabras clave: Yeast-cells Yeast Time-course Prooxidant Oxidative stress Mitochondria Membrane-lipid composition Melatonin L-tryptophan metabolites Hypoxia Hydrogen peroxide Growth Gene-expression Cytochrome-c-oxidase Bioactive compound Antioxidant Alcoholic fermentation oxidative stress mitochondria melatonin hypoxia hydrogen peroxide bioactive compound antioxidant
    Resumen: © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Melatonin is a ubiquitous indolamine that plays important roles in various aspects of biological processes in mammals. In Saccharomyces cerevisiae, melatonin has been reported to exhibit antioxidant properties and to modulate the expression of some genes involved in endogenous defense systems. The aim of this study was to elucidate the role of supplemented melatonin at the transcriptional level in S. cerevisiae in the presence and absence of oxidative stress. This was achieved by exposing yeast cells pretreated with different melatonin concentrations to hydrogen peroxide and assessing the entry of melatonin into the cell and the yeast response at the transcriptional level (by microarray and qPCR analyses) and the physiological level (by analyzing changes in the lipid composition and mitochondrial activity). We found that exogenous melatonin crossed cellular membranes at nanomolar concentrations and modulated the expression of many genes, mainly downregulating the expression of mitochondrial genes in the absence of oxidative stress, triggering a hypoxia-like response, and upregulating them under stress, mainly the cytochrome complex and electron transport chain. Other categories that were enriched by the effect of melatonin were related to transport, antioxidant activity, signaling, and carbohydrate and lipid metabolism. The overall results suggest that melatonin is able to reprogram the cellular machinery to achieve tolerance to oxidative stress.
    Áreas temáticas: Química Physiology Molecular biology Medicina ii Medicina i Interdisciplinar Food science & technology Food science Farmacia Engenharias ii Clinical biochemistry Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Chemistry, medicinal Cell biology Biotecnología Biodiversidade Biochemistry & molecular biology Biochemistry
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 20763921
    Direcció de correo del autor: gemma.beltran@urv.cat merce.sunyer@estudiants.urv.cat merce.sunyer@estudiants.urv.cat mjesus.torija@urv.cat albert.mas@urv.cat
    Identificador del autor: 0000-0002-7071-205X 0000-0001-6419-0745 0000-0002-0763-1679
    Fecha de alta del registro: 2024-10-12
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Enlace a la fuente original: https://www.mdpi.com/2076-3921/9/10/947
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Antioxidants. 9 (10): 1-26
    Referencia de l'ítem segons les normes APA: Sunyer-Figueres, Merce; Vazquez, Jennifer; Mas, Albert; Torija, Maria-Jesus; Beltran, Gemma (2020). Transcriptomic insights into the effect of melatonin in saccharomyces cerevisiae in the presence and absence of oxidative stress. Antioxidants, 9(10), 1-26. DOI: 10.3390/antiox9100947
    DOI del artículo: 10.3390/antiox9100947
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2020
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Biochemistry,Biochemistry & Molecular Biology,Cell Biology,Chemistry, Medicinal,Clinical Biochemistry,Food Science,Food Science & Technology,Molecular Biology,Physiology
    Yeast-cells
    Yeast
    Time-course
    Prooxidant
    Oxidative stress
    Mitochondria
    Membrane-lipid composition
    Melatonin
    L-tryptophan metabolites
    Hypoxia
    Hydrogen peroxide
    Growth
    Gene-expression
    Cytochrome-c-oxidase
    Bioactive compound
    Antioxidant
    Alcoholic fermentation
    oxidative stress
    mitochondria
    melatonin
    hypoxia
    hydrogen peroxide
    bioactive compound
    antioxidant
    Química
    Physiology
    Molecular biology
    Medicina ii
    Medicina i
    Interdisciplinar
    Food science & technology
    Food science
    Farmacia
    Engenharias ii
    Clinical biochemistry
    Ciências biológicas ii
    Ciências biológicas i
    Ciências ambientais
    Ciências agrárias i
    Ciência de alimentos
    Chemistry, medicinal
    Cell biology
    Biotecnología
    Biodiversidade
    Biochemistry & molecular biology
    Biochemistry
  • Documentos:

  • Cerca a google

    Search to google scholar