Articles producció científica> Enginyeria Informàtica i Matemàtiques

Total Roman Domination Number of Rooted Product Graphs

  • Datos identificativos

    Identificador: imarina:9048284
    Autores:
    Cabrera Martinez, AbelCabrera Garcia, SuitbertoCarrion Garcia, AndresHernandez Mira, Frank A.
    Resumen:
    Let G be a graph with no isolated vertex and f:V(G)->{0,1,2} a function. If f satisfies that every vertex in the set {v is an element of V(G):f(v)=0} is adjacent to at least one vertex in the set {v is an element of V(G):f(v)=2}, and if the subgraph induced by the set {v is an element of V(G):f(v)>= 1} has no isolated vertex, then we say that f is a total Roman dominating function on G. The minimum weight omega(f)= n-ary sumation v is an element of V(G)f(v) among all total Roman dominating functions f on G is the total Roman domination number of G. In this article we study this parameter for the rooted product graphs. Specifically, we obtain closed formulas and tight bounds for the total Roman domination number of rooted product graphs in terms of domination invariants of the factor graphs involved in this product.
  • Otros:

    Autor según el artículo: Cabrera Martinez, Abel; Cabrera Garcia, Suitberto; Carrion Garcia, Andres; Hernandez Mira, Frank A.;
    Departamento: Enginyeria Informàtica i Matemàtiques
    Autor/es de la URV: CABRERA MARTÍNEZ, ABEL
    Palabras clave: Total roman domination Total domination Rooted product graph
    Resumen: Let G be a graph with no isolated vertex and f:V(G)->{0,1,2} a function. If f satisfies that every vertex in the set {v is an element of V(G):f(v)=0} is adjacent to at least one vertex in the set {v is an element of V(G):f(v)=2}, and if the subgraph induced by the set {v is an element of V(G):f(v)>= 1} has no isolated vertex, then we say that f is a total Roman dominating function on G. The minimum weight omega(f)= n-ary sumation v is an element of V(G)f(v) among all total Roman dominating functions f on G is the total Roman domination number of G. In this article we study this parameter for the rooted product graphs. Specifically, we obtain closed formulas and tight bounds for the total Roman domination number of rooted product graphs in terms of domination invariants of the factor graphs involved in this product.
    Áreas temáticas: Química Mathematics (miscellaneous) Mathematics General mathematics Astronomia / física
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: abel.cabrera@urv.cat
    Identificador del autor: 0000-0003-2806-4842
    Fecha de alta del registro: 2021-10-10
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Enlace a la fuente original: https://www.mdpi.com/2227-7390/8/10/1850
    Referencia al articulo segun fuente origial: Mathematics. 8 (10): 1-13
    Referencia de l'ítem segons les normes APA: Cabrera Martinez, Abel; Cabrera Garcia, Suitberto; Carrion Garcia, Andres; Hernandez Mira, Frank A.; (2020). Total Roman Domination Number of Rooted Product Graphs. Mathematics, 8(10), 1-13. DOI: 10.3390/math8101850
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    DOI del artículo: 10.3390/math8101850
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2020
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Mathematics,Mathematics (Miscellaneous)
    Total roman domination
    Total domination
    Rooted product graph
    Química
    Mathematics (miscellaneous)
    Mathematics
    General mathematics
    Astronomia / física
  • Documentos:

  • Cerca a google

    Search to google scholar