Autor según el artículo: Cabrera Martinez, Abel; Cabrera Garcia, Suitberto; Carrion Garcia, Andres; Hernandez Mira, Frank A.;
Departamento: Enginyeria Informàtica i Matemàtiques
Autor/es de la URV: CABRERA MARTÍNEZ, ABEL
Palabras clave: Total roman domination Total domination Rooted product graph
Resumen: Let G be a graph with no isolated vertex and f:V(G)->{0,1,2} a function. If f satisfies that every vertex in the set {v is an element of V(G):f(v)=0} is adjacent to at least one vertex in the set {v is an element of V(G):f(v)=2}, and if the subgraph induced by the set {v is an element of V(G):f(v)>= 1} has no isolated vertex, then we say that f is a total Roman dominating function on G. The minimum weight omega(f)= n-ary sumation v is an element of V(G)f(v) among all total Roman dominating functions f on G is the total Roman domination number of G. In this article we study this parameter for the rooted product graphs. Specifically, we obtain closed formulas and tight bounds for the total Roman domination number of rooted product graphs in terms of domination invariants of the factor graphs involved in this product.
Áreas temáticas: Química Mathematics (miscellaneous) Mathematics General mathematics Astronomia / física
Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
Direcció de correo del autor: abel.cabrera@urv.cat
Identificador del autor: 0000-0003-2806-4842
Fecha de alta del registro: 2021-10-10
Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
Referencia al articulo segun fuente origial: Mathematics. 8 (10): 1-13
Referencia de l'ítem segons les normes APA: Cabrera Martinez, Abel; Cabrera Garcia, Suitberto; Carrion Garcia, Andres; Hernandez Mira, Frank A.; (2020). Total Roman Domination Number of Rooted Product Graphs. Mathematics, 8(10), 1-13. DOI: 10.3390/math8101850
URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
Entidad: Universitat Rovira i Virgili
Año de publicación de la revista: 2020
Tipo de publicación: Journal Publications