Articles producció científica> Enginyeria Informàtica i Matemàtiques

INDEPENDENT TRANSVERSAL TOTAL DOMINATION VERSUS TOTAL DOMINATION IN TREES

  • Datos identificativos

    Identificador: imarina:9093097
    Autores:
    Cabrera Martinez, AbelPeterin, IztokYero, Ismael G.
    Resumen:
    A subset of vertices in a graph G is a total dominating set if every vertex in G is adjacent to at least one vertex in this subset. The total domination number of G is the minimum cardinality of any total dominating set in G and is denoted by gamma(t)(G). A total dominating set of G having nonempty intersection with all the independent sets of maximum cardinality in G is an independent transversal total dominating set. The minimum cardinality of any independent transversal total dominating set is denoted by gamma(u) (G). Based on the fact that for any tree T, gamma(t) (T) <= gamma(u) (T) <= gamma(t) (T) + 1, in this work we give several relationship(s) between gamma(u) (T) and gamma(t) (T) for trees T which are leading to classify the trees which are satisfying the equality in these bounds.
  • Otros:

    Autor según el artículo: Cabrera Martinez, Abel; Peterin, Iztok; Yero, Ismael G.;
    Departamento: Enginyeria Informàtica i Matemàtiques
    Autor/es de la URV: CABRERA MARTÍNEZ, ABEL / GONZÁLEZ YERO, ISMAEL
    Palabras clave: Trees Total domination number Independent transversal total domination number Independence number
    Resumen: A subset of vertices in a graph G is a total dominating set if every vertex in G is adjacent to at least one vertex in this subset. The total domination number of G is the minimum cardinality of any total dominating set in G and is denoted by gamma(t)(G). A total dominating set of G having nonempty intersection with all the independent sets of maximum cardinality in G is an independent transversal total dominating set. The minimum cardinality of any independent transversal total dominating set is denoted by gamma(u) (G). Based on the fact that for any tree T, gamma(t) (T) <= gamma(u) (T) <= gamma(t) (T) + 1, in this work we give several relationship(s) between gamma(u) (T) and gamma(t) (T) for trees T which are leading to classify the trees which are satisfying the equality in these bounds.
    Áreas temáticas: Mathematics Matemática / probabilidade e estatística Discrete mathematics and combinatorics Ciência da computação Applied mathematics
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 1234-3099
    Direcció de correo del autor: abel.cabrera@urv.cat
    Identificador del autor: 0000-0003-2806-4842
    Página final: 224
    Fecha de alta del registro: 2021-10-10
    Volumen de revista: 41
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Enlace a la fuente original: https://www.dmgt.uz.zgora.pl/publish/bbl_view_pdf.php?ID=42027
    Referencia al articulo segun fuente origial: Discussiones Mathematicae Graph Theory. 41 (1): 213-224
    Referencia de l'ítem segons les normes APA: Cabrera Martinez, Abel; Peterin, Iztok; Yero, Ismael G.; (2021). INDEPENDENT TRANSVERSAL TOTAL DOMINATION VERSUS TOTAL DOMINATION IN TREES. Discussiones Mathematicae Graph Theory, 41(1), 213-224. DOI: 10.7151/dmgt.2200
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    DOI del artículo: 10.7151/dmgt.2200
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2021
    Página inicial: 213
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Applied Mathematics,Discrete Mathematics and Combinatorics,Mathematics
    Trees
    Total domination number
    Independent transversal total domination number
    Independence number
    Mathematics
    Matemática / probabilidade e estatística
    Discrete mathematics and combinatorics
    Ciência da computação
    Applied mathematics
  • Documentos:

  • Cerca a google

    Search to google scholar