Articles producció científica> Enginyeria Informàtica i Matemàtiques

Atomicity and density of Puiseux monoids

  • Datos identificativos

    Identificador: imarina:9138872
    Autores:
    Bras-Amoros MGotti M
    Resumen:
    © 2020 Taylor & Francis Group, LLC. A Puiseux monoid is an additive submonoid consisting of non-negative rationals. Although the operation of addition is continuous with respect to the standard topology, the set of irreducibles of a Puiseux monoid is, in general, difficult to describe. Here, we use topological density to understand how much a Puiseux monoid, as well as its set of irreducibles, spread throughout the real line. First, we separate Puiseux monoids according to their density, and we characterize monoids in each of these classes in terms of generating sets and sets of irreducibles. Then we study the density of the difference group, the root closure, and the conductor semigroup of a Puiseux monoid. Finally, we prove that every Puiseux monoid generated by a strictly increasing sequence of rationals is nowhere dense in the real line and has empty conductor.
  • Otros:

    Autor según el artículo: Bras-Amoros M; Gotti M
    Departamento: Enginyeria Informàtica i Matemàtiques
    Autor/es de la URV: Bras Amoros, Maria
    Palabras clave: Puiseux monoid Increasing monoid Factorization Density Atomicity Atomically dense monoid
    Resumen: © 2020 Taylor & Francis Group, LLC. A Puiseux monoid is an additive submonoid consisting of non-negative rationals. Although the operation of addition is continuous with respect to the standard topology, the set of irreducibles of a Puiseux monoid is, in general, difficult to describe. Here, we use topological density to understand how much a Puiseux monoid, as well as its set of irreducibles, spread throughout the real line. First, we separate Puiseux monoids according to their density, and we characterize monoids in each of these classes in terms of generating sets and sets of irreducibles. Then we study the density of the difference group, the root closure, and the conductor semigroup of a Puiseux monoid. Finally, we prove that every Puiseux monoid generated by a strictly increasing sequence of rationals is nowhere dense in the real line and has empty conductor.
    Áreas temáticas: Mathematics Matemática / probabilidade e estatística Algebra and number theory
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: maria.bras@urv.cat
    Identificador del autor: 0000-0002-3481-004X
    Fecha de alta del registro: 2024-07-27
    Versión del articulo depositado: info:eu-repo/semantics/acceptedVersion
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Communications In Algebra. (4): 1560-1570
    Referencia de l'ítem segons les normes APA: Bras-Amoros M; Gotti M (2021). Atomicity and density of Puiseux monoids. Communications In Algebra, (4), 1560-1570. DOI: 10.1080/00927872.2020.1840574
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2021
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Algebra and Number Theory,Mathematics
    Puiseux monoid
    Increasing monoid
    Factorization
    Density
    Atomicity
    Atomically dense monoid
    Mathematics
    Matemática / probabilidade e estatística
    Algebra and number theory
  • Documentos:

  • Cerca a google

    Search to google scholar