Articles producció científica> Enginyeria Informàtica i Matemàtiques

Asymptotic expansion of the Dulac map and time for unfoldings of hyperbolic saddles: General setting

  • Datos identificativos

    Identificador: imarina:9138883
    Autores:
    Marín DVilladelprat J
    Resumen:
    © 2020 Elsevier Inc. Given a C∞ family of planar vector fields {Xμˆ}μˆ∈Wˆ having a hyperbolic saddle, we study the Dulac map D(s;μˆ) and the Dulac time T(s;μˆ) between two transverse sections located in the separatrices at arbitrary distance from the saddle. We show (Theorems A and B, respectively) that, for any μˆ0∈Wˆ and L>0, the functions T(s;μˆ) and D(s;μˆ) have an asymptotic expansion at s=0 for μˆ≈μˆ0 with the remainder being uniformly L-flat with respect to the parameters. The principal part of both asymptotic expansions is given in a monomial scale containing a deformation of the logarithm, the so-called Roussarie-Ecalle compensator. The coefficients of these monomials are C∞ functions “universally” defined, meaning that their existence is established before fixing the flatness L of the remainder and the unfolded parameter μˆ0. Moreover the flatness L of the remainder is preserved after any derivation with respect to the parameters. We also provide (Theorem C) an explicit upper bound for the number of zeros of T′(s;μˆ) bifurcating from s=0 as μˆ≈μˆ0. This result enables to tackle finiteness problems for the number of critical periodic orbits along the lines of those theorems on finite cyclicity around Hilbert's 16th problem. As an application we prove two finiteness results (Corollaries D and E) about the number of critical periodic orbits of polynomial vector fields.
  • Otros:

    Autor según el artículo: Marín D; Villadelprat J
    Departamento: Enginyeria Informàtica i Matemàtiques
    Autor/es de la URV: Villadelprat Yagüe, Jordi
    Código de proyecto: PID2020-118281GB-C33
    Palabras clave: asymptotic expansion critical periods criticality cyclicity dulac time families uniform flatness Asymptotic expansion Criticality Dulac map Dulac time Hilberts 16th problem Uniform flatness
    Resumen: © 2020 Elsevier Inc. Given a C∞ family of planar vector fields {Xμˆ}μˆ∈Wˆ having a hyperbolic saddle, we study the Dulac map D(s;μˆ) and the Dulac time T(s;μˆ) between two transverse sections located in the separatrices at arbitrary distance from the saddle. We show (Theorems A and B, respectively) that, for any μˆ0∈Wˆ and L>0, the functions T(s;μˆ) and D(s;μˆ) have an asymptotic expansion at s=0 for μˆ≈μˆ0 with the remainder being uniformly L-flat with respect to the parameters. The principal part of both asymptotic expansions is given in a monomial scale containing a deformation of the logarithm, the so-called Roussarie-Ecalle compensator. The coefficients of these monomials are C∞ functions “universally” defined, meaning that their existence is established before fixing the flatness L of the remainder and the unfolded parameter μˆ0. Moreover the flatness L of the remainder is preserved after any derivation with respect to the parameters. We also provide (Theorem C) an explicit upper bound for the number of zeros of T′(s;μˆ) bifurcating from s=0 as μˆ≈μˆ0. This result enables to tackle finiteness problems for the number of critical periodic orbits along the lines of those theorems on finite cyclicity around Hilbert's 16th problem. As an application we prove two finiteness results (Corollaries D and E) about the number of critical periodic orbits of polynomial vector fields.
    Áreas temáticas: Analysis Applied mathematics Astronomia / física Ciência da computação Ciências agrárias i Engenharias iii Interdisciplinar Matemática / probabilidade e estatística Mathematics
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: jordi.villadelprat@urv.cat
    Identificador del autor: 0000-0002-1168-9750
    Fecha de alta del registro: 2023-02-19
    Versión del articulo depositado: info:eu-repo/semantics/acceptedVersion
    Enlace a la fuente original: https://www.sciencedirect.com/science/article/abs/pii/S0022039620306021
    Programa de financiación: Herramientas para el análisis de diagramas de bifurcación en sistemas dinámicos
    Referencia al articulo segun fuente origial: Journal Of Differential Equations. 275 684-732
    Referencia de l'ítem segons les normes APA: Marín D; Villadelprat J (2021). Asymptotic expansion of the Dulac map and time for unfoldings of hyperbolic saddles: General setting. Journal Of Differential Equations, 275(), 684-732. DOI: 10.1016/j.jde.2020.11.020
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Acrónimo: ATBiD
    DOI del artículo: 10.1016/j.jde.2020.11.020
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2021
    Acción del progama de financiación: Proyectos I+D Generación de Conocimiento
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Analysis,Applied Mathematics,Mathematics
    asymptotic expansion
    critical periods
    criticality
    cyclicity
    dulac time
    families
    uniform flatness
    Asymptotic expansion
    Criticality
    Dulac map
    Dulac time
    Hilberts 16th problem
    Uniform flatness
    Analysis
    Applied mathematics
    Astronomia / física
    Ciência da computação
    Ciências agrárias i
    Engenharias iii
    Interdisciplinar
    Matemática / probabilidade e estatística
    Mathematics
  • Documentos:

  • Cerca a google

    Search to google scholar