Articles producció científica> Enginyeria Informàtica i Matemàtiques

On the super domination number of graphs

  • Datos identificativos

    Identificador: imarina:9138942
    Autores:
    Klein, Douglas JRodriguez-Velazquez, Juan AYi, Eunjeong
    Resumen:
    © 2020 Azarbaijan Shahid Madani University The open neighborhood of a vertex v of a graph G is the set N(v) consisting of all vertices adjacent to v in G. For D ⊆ V (G), we define D = V (G) \ D. A set D ⊆ V (G) is called a super dominating set of G if for every vertex u ∈ D, there exists v ∈ D such that N(v) ∩ D = {u}. The super domination number of G is the minimum cardinality among all super dominating sets of G. In this paper, we obtain closed formulas and tight bounds for the super domination number of G in terms of several invariants of G. We also obtain results on the super domination number of corona product graphs and Cartesian product graphs.
  • Otros:

    Autor según el artículo: Klein, Douglas J; Rodriguez-Velazquez, Juan A; Yi, Eunjeong
    Departamento: Enginyeria Informàtica i Matemàtiques
    Autor/es de la URV: Rodríguez Velázquez, Juan Alberto
    Palabras clave: Super domination number Domination number Corona product Cartesian product
    Resumen: © 2020 Azarbaijan Shahid Madani University The open neighborhood of a vertex v of a graph G is the set N(v) consisting of all vertices adjacent to v in G. For D ⊆ V (G), we define D = V (G) \ D. A set D ⊆ V (G) is called a super dominating set of G if for every vertex u ∈ D, there exists v ∈ D such that N(v) ∩ D = {u}. The super domination number of G is the minimum cardinality among all super dominating sets of G. In this paper, we obtain closed formulas and tight bounds for the super domination number of G in terms of several invariants of G. We also obtain results on the super domination number of corona product graphs and Cartesian product graphs.
    Áreas temáticas: Mathematics, applied Mathematics Discrete mathematics and combinatorics Control and optimization
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: juanalberto.rodriguez@urv.cat
    Identificador del autor: 0000-0002-9082-7647
    Fecha de alta del registro: 2024-10-26
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Enlace a la fuente original: http://comb-opt.azaruniv.ac.ir/article_13980.html
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Communications In Combinatorics And Optimization. 5 (2): 83-96
    Referencia de l'ítem segons les normes APA: Klein, Douglas J; Rodriguez-Velazquez, Juan A; Yi, Eunjeong (2020). On the super domination number of graphs. Communications In Combinatorics And Optimization, 5(2), 83-96. DOI: 10.22049/CCO.2019.26587.1122
    DOI del artículo: 10.22049/CCO.2019.26587.1122
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2020
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Control and Optimization,Discrete Mathematics and Combinatorics,Mathematics,Mathematics, Applied
    Super domination number
    Domination number
    Corona product
    Cartesian product
    Mathematics, applied
    Mathematics
    Discrete mathematics and combinatorics
    Control and optimization
  • Documentos:

  • Cerca a google

    Search to google scholar