Articles producció científica> Enginyeria Química

A brief introduction to the basics of NMR spectroscopy and selected examples of its applications to materials characterization

  • Datos identificativos

    Identificador: imarina:9177890
    Autores:
    Tampieri, AlbertoSzabo, MarkMedina, FrancescGulyas, Henrik
    Resumen:
    Nuclear magnetic resonance (NMR) spectroscopy is an analytical technique that gives information on the local magnetic field around atomic nuclei. Since the local magnetic field of the nucleus is directly influenced by such features of the molecular structure as constitution, configuration, conformation, intermolecular interactions, etc., NMR can provide exhaustive information on the chemical structure, which is unrivaled by any other analytical method. Starting from the 1950s, NMR spectroscopy first revolutionized organic chemistry and became an indispensable tool for the structure elucidation of small, soluble molecules. As the technique evolved, NMR rapidly conquered other disciplines of chemical sciences. When the analysis of macromolecules and solids also became feasible, the technique turned into a staple in materials characterization, too. All aspects of NMR spectroscopy, including technical and technological development, as well as its applications in natural sciences, have been growing exponentially since its birth. Hence, it would be impossible to cover, or even touch on, all topics of importance related to this versatile analytical tool. In this tutorial, we aim to introduce the reader to the basic principles of NMR spectroscopy, instrumentation, historical development and currently available brands, practical cost aspects, sample preparation, and spectrum interpretation. We show a number of advanced techniques relevant to materials characterization. Through a limited number of examples from different fields of materials science, we illustrate the immense scope of the technique in the analysis of materials. Beyond our inherently limited introduction, an ample list of references should help the reader to navigate further in the field of NMR spectroscopy.
  • Otros:

    Autor según el artículo: Tampieri, Alberto; Szabo, Mark; Medina, Francesc; Gulyas, Henrik;
    Departamento: Enginyeria Química
    Autor/es de la URV: Medina Cabello, Francisco / Tampieri, Alberto
    Código de proyecto: grant agreement No. 712949
    Palabras clave: Ultrafast 2d nmr Solid-state nmr Signal enhancement Rotational-echo Quadrupolar nuclei Pulse sequences Pfg nmr porous materials Operando nmr Nuclear magnetic resonance spectroscopy Natural-abundance Materials characterization Mas nmr Liquid-phase nmr In situ nmr Dynamic nuclear-polarization Dynamic nuclear polarization Chemical-shifts Angle-spinning nmr
    Resumen: Nuclear magnetic resonance (NMR) spectroscopy is an analytical technique that gives information on the local magnetic field around atomic nuclei. Since the local magnetic field of the nucleus is directly influenced by such features of the molecular structure as constitution, configuration, conformation, intermolecular interactions, etc., NMR can provide exhaustive information on the chemical structure, which is unrivaled by any other analytical method. Starting from the 1950s, NMR spectroscopy first revolutionized organic chemistry and became an indispensable tool for the structure elucidation of small, soluble molecules. As the technique evolved, NMR rapidly conquered other disciplines of chemical sciences. When the analysis of macromolecules and solids also became feasible, the technique turned into a staple in materials characterization, too. All aspects of NMR spectroscopy, including technical and technological development, as well as its applications in natural sciences, have been growing exponentially since its birth. Hence, it would be impossible to cover, or even touch on, all topics of importance related to this versatile analytical tool. In this tutorial, we aim to introduce the reader to the basic principles of NMR spectroscopy, instrumentation, historical development and currently available brands, practical cost aspects, sample preparation, and spectrum interpretation. We show a number of advanced techniques relevant to materials characterization. Through a limited number of examples from different fields of materials science, we illustrate the immense scope of the technique in the analysis of materials. Beyond our inherently limited introduction, an ample list of references should help the reader to navigate further in the field of NMR spectroscopy.
    Áreas temáticas: Physics and astronomy (miscellaneous) Physics and astronomy (all) Multidisciplinary sciences Materials science (miscellaneous) Materials science (all) General physics and astronomy General materials science General chemistry Chemistry (miscellaneous) Chemistry (all)
    Direcció de correo del autor: alberto.tampieri@estudiants.urv.cat alberto.tampieri@estudiants.urv.cat francesc.medina@urv.cat
    Identificador del autor: 0000-0002-3111-1542
    Fecha de alta del registro: 2024-07-27
    Versión del articulo depositado: info:eu-repo/semantics/submittedVersion
    Programa de financiación: Marie Skłodowska-Curie Actions - European Union's Horizon 2020 research and innovation programme
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Physical Sciences Reviews. 6 (1):
    Referencia de l'ítem segons les normes APA: Tampieri, Alberto; Szabo, Mark; Medina, Francesc; Gulyas, Henrik; (2021). A brief introduction to the basics of NMR spectroscopy and selected examples of its applications to materials characterization. Physical Sciences Reviews, 6(1), -. DOI: 10.1515/psr-2019-0086
    Acrónimo: DECOM-PE
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2021
    Acción del progama de financiación: Conversion of plastic waste into fuel and added-value chemicals TECSPR16-1-0016
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Chemistry (Miscellaneous),Materials Science (Miscellaneous),Multidisciplinary Sciences,Physics and Astronomy (Miscellaneous)
    Ultrafast 2d nmr
    Solid-state nmr
    Signal enhancement
    Rotational-echo
    Quadrupolar nuclei
    Pulse sequences
    Pfg nmr porous materials
    Operando nmr
    Nuclear magnetic resonance spectroscopy
    Natural-abundance
    Materials characterization
    Mas nmr
    Liquid-phase nmr
    In situ nmr
    Dynamic nuclear-polarization
    Dynamic nuclear polarization
    Chemical-shifts
    Angle-spinning nmr
    Physics and astronomy (miscellaneous)
    Physics and astronomy (all)
    Multidisciplinary sciences
    Materials science (miscellaneous)
    Materials science (all)
    General physics and astronomy
    General materials science
    General chemistry
    Chemistry (miscellaneous)
    Chemistry (all)
  • Documentos:

  • Cerca a google

    Search to google scholar