Articles producció científica> Enginyeria Química

Combination of ferrocene decorated gold nanoparticles and engineered primers for the direct reagentless determination of isothermally amplified DNA

  • Datos identificativos

    Identificador: imarina:9187099
    Autores:
    AL-Madhagi, SallamO'Sullivan, Ciara KProdromidis, Mamas IKatakis, Ioanis
    Resumen:
    A reagent-less DNA sensor has been developed exploiting a combination of gold nanoparticles, modified primers, and isothermal amplification. It is applied to the determination ofKarlodinium armiger, a toxic microalgae, as a model analyte to demonstrate this generic platform. Colloidal gold nanoparticles with an average diameter of 14 +/- 0.87 nm were modified with a mixed self-assembled monolayer of thiolated 33-mer DNA probes and (6-mercaptohexyl) ferrocene. Modified primers, exploiting a C3 spacer between the primer-binding site and an engineered single-stranded tail, were used in an isothermal recombinase polymerase amplification reaction to produce an amplicon by two single-stranded tails. These tails were designed to be complementary to a gold electrode tethered capture oligo probe, and an oligo probe immobilized on the gold nanoparticles, respectively. The time required for hybridization of the target tailed DNA with the surface immobilized probe and reporter probe immobilized on AuNPs was optimized and reduced to 10 min, in both cases. Amplification time was further optimized to be 40 min to ensure the maximum signal. Under optimal conditions, the limit of detection was found to be 1.6 fM of target dsDNA. Finally, the developed biosensor was successfully applied to the detection of genomic DNA extracted from a seawater sample that had been spiked with K. armiger cells. The demonstrated generic electrochemical genosensor can be exploited for the detection of any DNA sequence and ongoing work is moving towards an integrated system for use at the point-of-need.
  • Otros:

    Autor según el artículo: AL-Madhagi, Sallam; O'Sullivan, Ciara K; Prodromidis, Mamas I; Katakis, Ioanis
    Departamento: Enginyeria Química
    Autor/es de la URV: Katakis, Ioanis / O'SULLIVAN, CIARA KATHLEEN
    Palabras clave: Recombinase polymerase amplification Modified primers Karlodinium-veneficum Karlodinium armiger sequence in seawater Isothermal amplification Genomic dna Functionalized gold nanoparticles Electrochemical detection Dna detection Biosensors
    Resumen: A reagent-less DNA sensor has been developed exploiting a combination of gold nanoparticles, modified primers, and isothermal amplification. It is applied to the determination ofKarlodinium armiger, a toxic microalgae, as a model analyte to demonstrate this generic platform. Colloidal gold nanoparticles with an average diameter of 14 +/- 0.87 nm were modified with a mixed self-assembled monolayer of thiolated 33-mer DNA probes and (6-mercaptohexyl) ferrocene. Modified primers, exploiting a C3 spacer between the primer-binding site and an engineered single-stranded tail, were used in an isothermal recombinase polymerase amplification reaction to produce an amplicon by two single-stranded tails. These tails were designed to be complementary to a gold electrode tethered capture oligo probe, and an oligo probe immobilized on the gold nanoparticles, respectively. The time required for hybridization of the target tailed DNA with the surface immobilized probe and reporter probe immobilized on AuNPs was optimized and reduced to 10 min, in both cases. Amplification time was further optimized to be 40 min to ensure the maximum signal. Under optimal conditions, the limit of detection was found to be 1.6 fM of target dsDNA. Finally, the developed biosensor was successfully applied to the detection of genomic DNA extracted from a seawater sample that had been spiked with K. armiger cells. The demonstrated generic electrochemical genosensor can be exploited for the detection of any DNA sequence and ongoing work is moving towards an integrated system for use at the point-of-need.
    Áreas temáticas: Zootecnia / recursos pesqueiros Química Materiais Interdisciplinar Geociências Engenharias iv Engenharias ii Ciências biológicas i Ciências ambientais Chemistry, analytical Biotecnología Biodiversidade Astronomia / física Analytical chemistry
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: ioanis.katakis@urv.cat
    Identificador del autor: 0000-0003-4259-7098
    Fecha de alta del registro: 2024-10-26
    Versión del articulo depositado: info:eu-repo/semantics/acceptedVersion
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Microchimica Acta. 188 (4): 117-
    Referencia de l'ítem segons les normes APA: AL-Madhagi, Sallam; O'Sullivan, Ciara K; Prodromidis, Mamas I; Katakis, Ioanis (2021). Combination of ferrocene decorated gold nanoparticles and engineered primers for the direct reagentless determination of isothermally amplified DNA. Microchimica Acta, 188(4), 117-. DOI: 10.1007/s00604-021-04771-8
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2021
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Analytical Chemistry,Chemistry, Analytical
    Recombinase polymerase amplification
    Modified primers
    Karlodinium-veneficum
    Karlodinium armiger sequence in seawater
    Isothermal amplification
    Genomic dna
    Functionalized gold nanoparticles
    Electrochemical detection
    Dna detection
    Biosensors
    Zootecnia / recursos pesqueiros
    Química
    Materiais
    Interdisciplinar
    Geociências
    Engenharias iv
    Engenharias ii
    Ciências biológicas i
    Ciências ambientais
    Chemistry, analytical
    Biotecnología
    Biodiversidade
    Astronomia / física
    Analytical chemistry
  • Documentos:

  • Cerca a google

    Search to google scholar