Autor según el artículo: Serratosa, Francesc
Departamento: Enginyeria Informàtica i Matemàtiques
Autor/es de la URV: Serratosa Casanelles, Francesc d'Assís
Resumen: Graph edit distance has been used since 1983 to compare objects in machine learning when these objects are represented by attributed graphs instead of vectors. In these cases, the graph edit distance is usually applied to deduce a distance between attributed graphs. This distance is defined as the minimum amount of edit operations (deletion, insertion and substitution of nodes and edges) needed to transform a graph into another. Since now, it has been stated that the distance properties have to be applied [(1) non-negativity (2) symmetry (3) identity and (4) triangle inequality] to the involved edit operations in the process of computing the graph edit distance to make the graph edit distance a metric. In this paper, we show that there is no need to impose the triangle inequality in each edit operation. This is an important finding since in pattern recognition applications, the classification ratio usually maximizes in the edit operation combinations (deletion, insertion and substitution of nodes and edges) that the triangle inequality is not fulfilled.
Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
Direcció de correo del autor: francesc.serratosa@urv.cat
Identificador del autor: 0000-0001-6112-5913
Fecha de alta del registro: 2023-11-18
Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
Enlace a la fuente original: https://link.springer.com/article/10.1007/s42979-021-00792-5
Referencia al articulo segun fuente origial: Sn Computer Science. 2 (6): Article numbre 438-
Referencia de l'ítem segons les normes APA: Serratosa, Francesc (2021). Redefining the Graph Edit Distance. Sn Computer Science, 2(6), Article numbre 438-. DOI: 10.1007/s42979-021-00792-5
URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
DOI del artículo: 10.1007/s42979-021-00792-5
Entidad: Universitat Rovira i Virgili
Año de publicación de la revista: 2021
Tipo de publicación: Journal Publications