Articles producció científica> Enginyeria Química

Polyphenol loaded w1/o/w2 emulsions stabilized with lesser mealworm (Alphitobius diaperinus) protein concentrate produced by membrane emulsification: Stability under simulated storage, process, and digestion conditions

  • Datos identificativos

    Identificador: imarina:9242320
    Autores:
    Wang JBallon ASchroën Kde Lamo-Castellví SFerrando MGüell C
    Resumen:
    Water-in-oil-in-water (W1/O/W2 ) emulsions are complex delivery systems for polyphe-nols amongst other bio-actives. To stabilize the oil–water interphase, dairy proteins are commonly employed, which are ideally replaced by other, more sustainable sources, such as insect proteins. In this study, lesser mealworm (Alphitobius diaperinus) protein concentrate (LMPC) is assessed and compared to whey protein (WPI) and pea protein (PPI), to stabilize W1/O/W2 emulsions and encapsulate a commercial polyphenol. The results show that LMPC is able to stabilize W1/O/W2 emulsions comparably to whey protein and pea protein when using a low-energy membrane emulsification system. The final droplet size (d4,3) is 7.4 µm and encapsulation efficiency is between 72 and 74%, regardless of the protein used. Under acidic conditions, the LMPC shows a similar performance to whey protein and outperforms pea protein. Under alkaline conditions, the three proteins perform similarly, while the LMPC-stabilized emulsions are less able to withstand osmotic pressure differences. The LMPC stabilized emulsions are also more prone to droplet coalescence after a freeze–thaw cycle than the WPI-stabilized ones, but they are the most stable when exposed to the highest temperatures tested (90?C). The results show LMPC’s ability to stabilize multiple emulsions and encapsulate a polyphenol, which opens the door for application in foods. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
  • Otros:

    Autor según el artículo: Wang J; Ballon A; Schroën K; de Lamo-Castellví S; Ferrando M; Güell C
    Departamento: Enginyeria Química
    Autor/es de la URV: Ballon, Aurélie / De Lamo Castellvi, Silvia / Ferrando Cogollos, Maria Montserrat / Güell Saperas, Maria Carmen / Wang, Junjing
    Código de proyecto: Grant agreement No. 713679
    Palabras clave: Polyphenol encapsulation Multiple emulsions Membrane emulsification Lesser mealworm Insect protein Freeze-thaw stability Emulsion stability w/o/w emulsions rich extract polyphenol encapsulation pea protein multiple emulsions membrane emulsification lesser mealworm grade double emulsions functional-properties enzymatic-hydrolysis emulsion stability emulsifying properties edible insects
    Resumen: Water-in-oil-in-water (W1/O/W2 ) emulsions are complex delivery systems for polyphe-nols amongst other bio-actives. To stabilize the oil–water interphase, dairy proteins are commonly employed, which are ideally replaced by other, more sustainable sources, such as insect proteins. In this study, lesser mealworm (Alphitobius diaperinus) protein concentrate (LMPC) is assessed and compared to whey protein (WPI) and pea protein (PPI), to stabilize W1/O/W2 emulsions and encapsulate a commercial polyphenol. The results show that LMPC is able to stabilize W1/O/W2 emulsions comparably to whey protein and pea protein when using a low-energy membrane emulsification system. The final droplet size (d4,3) is 7.4 µm and encapsulation efficiency is between 72 and 74%, regardless of the protein used. Under acidic conditions, the LMPC shows a similar performance to whey protein and outperforms pea protein. Under alkaline conditions, the three proteins perform similarly, while the LMPC-stabilized emulsions are less able to withstand osmotic pressure differences. The LMPC stabilized emulsions are also more prone to droplet coalescence after a freeze–thaw cycle than the WPI-stabilized ones, but they are the most stable when exposed to the highest temperatures tested (90?C). The results show LMPC’s ability to stabilize multiple emulsions and encapsulate a polyphenol, which opens the door for application in foods. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
    Áreas temáticas: Plant science Microbiology Health professions (miscellaneous) Health (social science) Food science & technology Food science
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: aurelie.ballon@urv.cat silvia.delamo@urv.cat silvia.delamo@urv.cat carme.guell@urv.cat carme.guell@urv.cat montse.ferrando@urv.cat montse.ferrando@urv.cat
    Identificador del autor: 0000-0002-5261-6806 0000-0002-5261-6806 0000-0002-4566-5132 0000-0002-4566-5132 0000-0002-2076-4222 0000-0002-2076-4222
    Fecha de alta del registro: 2024-07-27
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Programa de financiación: Marie Skłodowska-Curie Actions - European Union's Horizon 2020 research and innovation programme
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Foods. 10 (12):
    Referencia de l'ítem segons les normes APA: Wang J; Ballon A; Schroën K; de Lamo-Castellví S; Ferrando M; Güell C (2021). Polyphenol loaded w1/o/w2 emulsions stabilized with lesser mealworm (Alphitobius diaperinus) protein concentrate produced by membrane emulsification: Stability under simulated storage, process, and digestion conditions. Foods, 10(12), -. DOI: 10.3390/foods10122997
    Acrónimo: MFP
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2021
    Acción del progama de financiación: Martí i Franquès COFUND Doctoral Programme
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Food Science,Food Science & Technology,Health (Social Science),Health Professions (Miscellaneous),Microbiology,Plant Science
    Polyphenol encapsulation
    Multiple emulsions
    Membrane emulsification
    Lesser mealworm
    Insect protein
    Freeze-thaw stability
    Emulsion stability
    w/o/w emulsions
    rich extract
    polyphenol encapsulation
    pea protein
    multiple emulsions
    membrane emulsification
    lesser mealworm
    grade double emulsions
    functional-properties
    enzymatic-hydrolysis
    emulsion stability
    emulsifying properties
    edible insects
    Plant science
    Microbiology
    Health professions (miscellaneous)
    Health (social science)
    Food science & technology
    Food science
  • Documentos:

  • Cerca a google

    Search to google scholar