Articles producció científica> Enginyeria Electrònica, Elèctrica i Automàtica

Online Signature Verification Systems on a Low-Cost FPGA

  • Datos identificativos

    Identificador: imarina:9243275
    Autores:
    Navarro ECLara RRGarcía ML
    Resumen:
    This paper describes three different approaches for the implementation of an online signature verification system on a low-cost FPGA. The system is based on an algorithm, which operates on real numbers using the double-precision floating-point IEEE 754 format. The double-precision computations are replaced by simpler formats, without affecting the biometrics performance, in order to permit efficient implementations on low-cost FPGA families. The first approach is an embedded system based on MicroBlaze, a 32-bit soft-core microprocessor designed for Xilinx FPGAs, which can be configured by including a single-precision floating-point unit (FPU). The second implementation attaches a hardware accelerator to the embedded system to reduce the execution time on floating-point vectors. The last approach is a custom computing system, which is built from a large set of arithmetic circuits that replace the floating-point data with a more efficient representation based on fixed-point format. The latter system provides a very high runtime acceleration factor at the expense of using a large number of FPGA resources, a complex development cycle and no flexibility since it cannot be adapted to other biometric algorithms. By contrast, the first system provides just the opposite features, while the second approach is a mixed solution between both of them. The experimental results show that both the hardware accelerator and the custom computing system reduce the execution time by a factor ×7.6 and ×201 but increase the logic FPGA resources by a factor ×2.3 and ×5.2, respectively, in comparison with the MicroBlaze embedded system.
  • Otros:

    Autor según el artículo: Navarro EC; Lara RR; García ML
    Departamento: Enginyeria Electrònica, Elèctrica i Automàtica
    Autor/es de la URV: Cantó Navarro, Enrique Fernando
    Palabras clave: Recognition Online signature Hardware accelerator Fpga Fixed-point Dtw Biometrics verification hardware accelerator fpga fixed-point dtw biometrics verification
    Resumen: This paper describes three different approaches for the implementation of an online signature verification system on a low-cost FPGA. The system is based on an algorithm, which operates on real numbers using the double-precision floating-point IEEE 754 format. The double-precision computations are replaced by simpler formats, without affecting the biometrics performance, in order to permit efficient implementations on low-cost FPGA families. The first approach is an embedded system based on MicroBlaze, a 32-bit soft-core microprocessor designed for Xilinx FPGAs, which can be configured by including a single-precision floating-point unit (FPU). The second implementation attaches a hardware accelerator to the embedded system to reduce the execution time on floating-point vectors. The last approach is a custom computing system, which is built from a large set of arithmetic circuits that replace the floating-point data with a more efficient representation based on fixed-point format. The latter system provides a very high runtime acceleration factor at the expense of using a large number of FPGA resources, a complex development cycle and no flexibility since it cannot be adapted to other biometric algorithms. By contrast, the first system provides just the opposite features, while the second approach is a mixed solution between both of them. The experimental results show that both the hardware accelerator and the custom computing system reduce the execution time by a factor ×7.6 and ×201 but increase the logic FPGA resources by a factor ×2.3 and ×5.2, respectively, in comparison with the MicroBlaze embedded system.
    Áreas temáticas: Química Process chemistry and technology Physics, applied Materials science, multidisciplinary Materials science (miscellaneous) Materials science (all) Materiais Instrumentation General materials science General engineering Fluid flow and transfer processes Engineering, multidisciplinary Engineering (miscellaneous) Engineering (all) Engenharias ii Engenharias i Computer science applications Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências agrárias i Ciência de alimentos Chemistry, multidisciplinary Biodiversidade Astronomia / física
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: enrique.canto@urv.cat
    Identificador del autor: 0000-0002-5674-4119
    Fecha de alta del registro: 2024-09-07
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Enlace a la fuente original: https://www.mdpi.com/2076-3417/12/1/378
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Applied Sciences-Basel. 12 (1):
    Referencia de l'ítem segons les normes APA: Navarro EC; Lara RR; García ML (2022). Online Signature Verification Systems on a Low-Cost FPGA. Applied Sciences-Basel, 12(1), -. DOI: 10.3390/app12010378
    DOI del artículo: 10.3390/app12010378
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2022
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Chemistry, Multidisciplinary,Computer Science Applications,Engineering (Miscellaneous),Engineering, Multidisciplinary,Fluid Flow and Transfer Processes,Instrumentation,Materials Science (Miscellaneous),Materials Science, Multidisciplinary,Physics, Applied,Process Chemistry and Technology
    Recognition
    Online signature
    Hardware accelerator
    Fpga
    Fixed-point
    Dtw
    Biometrics verification
    hardware accelerator
    fpga
    fixed-point
    dtw
    biometrics verification
    Química
    Process chemistry and technology
    Physics, applied
    Materials science, multidisciplinary
    Materials science (miscellaneous)
    Materials science (all)
    Materiais
    Instrumentation
    General materials science
    General engineering
    Fluid flow and transfer processes
    Engineering, multidisciplinary
    Engineering (miscellaneous)
    Engineering (all)
    Engenharias ii
    Engenharias i
    Computer science applications
    Ciências biológicas iii
    Ciências biológicas ii
    Ciências biológicas i
    Ciências agrárias i
    Ciência de alimentos
    Chemistry, multidisciplinary
    Biodiversidade
    Astronomia / física
  • Documentos:

  • Cerca a google

    Search to google scholar