Articles producció científica> Enginyeria Informàtica i Matemàtiques

A model to identify urban traffic congestion hotspots in complex networks

  • Datos identificativos

    Identificador: imarina:9245875
    Autores:
    Sole-Ribalta, AlbertGomez, SergioArenas, Alex
    Resumen:
    The rapid growth of population in urban areas is jeopardizing the mobility and air quality worldwide. One of the most notable problems arising is that of traffic congestion. With the advent of technologies able to sense real-time data about cities, and its public distribution for analysis, we are in place to forecast scenarios valuable for improvement and control. Here, we propose an idealized model, based on the critical phenomena arising in complex networks, that allows to analytically predict congestion hotspots in urban environments. Results on real cities' road networks, considering, in some experiments, real traffic data, show that the proposed model is capable of identifying susceptible junctions that might become hotspots if mobility demand increases.
  • Otros:

    Autor según el artículo: Sole-Ribalta, Albert; Gomez, Sergio; Arenas, Alex
    Departamento: Enginyeria Informàtica i Matemàtiques
    Autor/es de la URV: Arenas Moreno, Alejandro / Gómez Jiménez, Sergio / Solé Ribalta, Albert
    Palabras clave: Phase transitions physics Congestion model Complex networks congestion model complex networks
    Resumen: The rapid growth of population in urban areas is jeopardizing the mobility and air quality worldwide. One of the most notable problems arising is that of traffic congestion. With the advent of technologies able to sense real-time data about cities, and its public distribution for analysis, we are in place to forecast scenarios valuable for improvement and control. Here, we propose an idealized model, based on the critical phenomena arising in complex networks, that allows to analytically predict congestion hotspots in urban environments. Results on real cities' road networks, considering, in some experiments, real traffic data, show that the proposed model is capable of identifying susceptible junctions that might become hotspots if mobility demand increases.
    Áreas temáticas: Multidisciplinary sciences Multidisciplinary Medicina veterinaria Matemática / probabilidade e estatística Interdisciplinar Geociências Ciências biológicas i Ciências agrárias i Ciência da computação Biodiversidade Astronomia / física Antropologia / arqueologia
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: albert.sole@urv.cat sergio.gomez@urv.cat alexandre.arenas@urv.cat
    Identificador del autor: 0000-0002-2953-5338 0000-0003-1820-0062 0000-0003-0937-0334
    Fecha de alta del registro: 2024-09-28
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Enlace a la fuente original: https://royalsocietypublishing.org/doi/10.1098/rsos.160098
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Royal Society Open Science. 3 (10): 160098-
    Referencia de l'ítem segons les normes APA: Sole-Ribalta, Albert; Gomez, Sergio; Arenas, Alex (2016). A model to identify urban traffic congestion hotspots in complex networks. Royal Society Open Science, 3(10), 160098-. DOI: 10.1098/rsos.160098
    DOI del artículo: 10.1098/rsos.160098
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2016
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Multidisciplinary,Multidisciplinary Sciences
    Phase transitions physics
    Congestion model
    Complex networks
    congestion model
    complex networks
    Multidisciplinary sciences
    Multidisciplinary
    Medicina veterinaria
    Matemática / probabilidade e estatística
    Interdisciplinar
    Geociências
    Ciências biológicas i
    Ciências agrárias i
    Ciência da computação
    Biodiversidade
    Astronomia / física
    Antropologia / arqueologia
  • Documentos:

  • Cerca a google

    Search to google scholar