Articles producció científica> Enginyeria Química

O3/H2O2 and UV-C light irradiation treatment of oil sands process water

  • Datos identificativos

    Identificador: imarina:9261223
    Autores:
    Demir-Duz, HandePerez-Estrada, Leonidas AAlvarez, Mayra GEl-Din, Mohamed GamalContreras, Sandra
    Resumen:
    The oil sands industry generates large volumes of oil sands process water (OSPW). There is an urgent need for OSPW treatment to reduce process water inventories and to support current reclamation approaches. This study discusses how efficient ozone (O3)-based combined advanced oxidation processes (AOPs), including hydrogen peroxide (H2O2) and UV-C, are at achieving mineralization while reducing the toxicity arising from such organic components as naphthenic acids (NAs) in OSPW. The results showed that the dissolved organic carbon (DOC) removals of 45%, 84%, 84% and 98%, obtained after 90-min treatments with O3, O3/H2O2, UVC/O3 and UVC/O3/H2O2, respectively, at a production rate of 6 g/L·h O3 were considerably higher than at lower O3 production rates. The acute toxicity on Vibrio fischeri was significantly reduced by all the treatments, which explains the high percentages of NA removal (up to 99% as confirmed by UPLC-QTOF-HRMS.) Mineralization (expressed as DOC removal) was highest with UVC/O3/H2O2 at ca. 2 mg C/L in the treated effluent, which means that it could be used as cooling/boiling process water in bitumen upgrading units. However, considering the energy demand of the treatments tested, the treatment using O3/H2O2 was found to be the most realistic for large-scale applications.
  • Otros:

    Autor según el artículo: Demir-Duz, Hande; Perez-Estrada, Leonidas A; Alvarez, Mayra G; El-Din, Mohamed Gamal; Contreras, Sandra
    Departamento: Enginyeria Química
    Autor/es de la URV: Contreras Iglesias, Sandra / GARCÍA ALVAREZ, MAYRA
    Palabras clave: Water treatment Water purification Water pollutants, chemical Water Ozone Ospw Oil and gas fields Naphthenic acids Hydrogen peroxide Electrical energy per order Carboxylic acids Advanced oxidation processes water treatment waste-water toxicity peroxide performance ozone ozonation naphthenic acids electrical energy per order degradation advanced oxidation processes
    Resumen: The oil sands industry generates large volumes of oil sands process water (OSPW). There is an urgent need for OSPW treatment to reduce process water inventories and to support current reclamation approaches. This study discusses how efficient ozone (O3)-based combined advanced oxidation processes (AOPs), including hydrogen peroxide (H2O2) and UV-C, are at achieving mineralization while reducing the toxicity arising from such organic components as naphthenic acids (NAs) in OSPW. The results showed that the dissolved organic carbon (DOC) removals of 45%, 84%, 84% and 98%, obtained after 90-min treatments with O3, O3/H2O2, UVC/O3 and UVC/O3/H2O2, respectively, at a production rate of 6 g/L·h O3 were considerably higher than at lower O3 production rates. The acute toxicity on Vibrio fischeri was significantly reduced by all the treatments, which explains the high percentages of NA removal (up to 99% as confirmed by UPLC-QTOF-HRMS.) Mineralization (expressed as DOC removal) was highest with UVC/O3/H2O2 at ca. 2 mg C/L in the treated effluent, which means that it could be used as cooling/boiling process water in bitumen upgrading units. However, considering the energy demand of the treatments tested, the treatment using O3/H2O2 was found to be the most realistic for large-scale applications.
    Áreas temáticas: Zootecnia / recursos pesqueiros Waste management and disposal Saúde coletiva Química Pollution Odontología Nutrição Medicina veterinaria Medicina iii Medicina ii Medicina i Materiais Matemática / probabilidade e estatística Interdisciplinar Historia Geografía Geociências Farmacia Environmental sciences Environmental engineering Environmental chemistry Ensino Engenharias iii Engenharias ii Engenharias i Enfermagem Direito Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Ciência da computação Biotecnología Biodiversidade Astronomia / física
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: sandra.contreras@urv.cat
    Identificador del autor: 0000-0001-8917-4733
    Fecha de alta del registro: 2024-10-12
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Enlace a la fuente original: https://www.sciencedirect.com/science/article/pii/S0048969722018976
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Science Of The Total Environment. 832 154804-
    Referencia de l'ítem segons les normes APA: Demir-Duz, Hande; Perez-Estrada, Leonidas A; Alvarez, Mayra G; El-Din, Mohamed Gamal; Contreras, Sandra (2022). O3/H2O2 and UV-C light irradiation treatment of oil sands process water. Science Of The Total Environment, 832(), 154804-. DOI: 10.1016/j.scitotenv.2022.154804
    DOI del artículo: 10.1016/j.scitotenv.2022.154804
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2022
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Environmental Chemistry,Environmental Engineering,Environmental Sciences,Pollution,Waste Management and Disposal
    Water treatment
    Water purification
    Water pollutants, chemical
    Water
    Ozone
    Ospw
    Oil and gas fields
    Naphthenic acids
    Hydrogen peroxide
    Electrical energy per order
    Carboxylic acids
    Advanced oxidation processes
    water treatment
    waste-water
    toxicity
    peroxide
    performance
    ozone
    ozonation
    naphthenic acids
    electrical energy per order
    degradation
    advanced oxidation processes
    Zootecnia / recursos pesqueiros
    Waste management and disposal
    Saúde coletiva
    Química
    Pollution
    Odontología
    Nutrição
    Medicina veterinaria
    Medicina iii
    Medicina ii
    Medicina i
    Materiais
    Matemática / probabilidade e estatística
    Interdisciplinar
    Historia
    Geografía
    Geociências
    Farmacia
    Environmental sciences
    Environmental engineering
    Environmental chemistry
    Ensino
    Engenharias iii
    Engenharias ii
    Engenharias i
    Enfermagem
    Direito
    Ciências biológicas iii
    Ciências biológicas ii
    Ciências biológicas i
    Ciências ambientais
    Ciências agrárias i
    Ciência de alimentos
    Ciência da computação
    Biotecnología
    Biodiversidade
    Astronomia / física
  • Documentos:

  • Cerca a google

    Search to google scholar