Autor según el artículo: Singh, Aditya; Narula, Raghav; Rashwan, Hatem A; Abdel-Nasser, Mohamed; Puig, Domenec; Nandi, G C
Departamento: Enginyeria Informàtica i Matemàtiques
Autor/es de la URV: Abdellatif Fatahallah Ibrahim Mahmoud, Hatem / Abdelnasser Mohamed Mahmoud, Mohamed / Puig Valls, Domènec Savi / Singh, Aditya
Palabras clave: Visual odometry Slam Real-time Object detection Mapping Household robots Agglomerative clustering
Resumen: Semantic mapping is still challenging for household collaborative robots. Deep learning models have proved their capability to extract semantics from the scene and learn robot odometry. For interfacing semantic information with robot odometry, existing approaches extract both semantics and robot odometry separately and then integrate them using fusion techniques. Such approaches face many issues while integration, and the mapping procedure requires a lot of memory and resources to process the information. In an attempt to produce accurate semantic mapping with resource-limited devices, this paper proposes an efficient deep learning-based model to simultaneously estimate robot odometry by using monocular sequence frames and detecting objects in the frames. The proposed model includes two main components: using a YOLOv3 object detector as a backbone and a convolutional long short-term (Conv-LSTM) recurrent neural network to model the changes in camera pose. The unique advantage of the proposed model is that it boycotts the need for data association and the requirement of multi-sensor fusion. We conducted the experiments on a LoCoBot robot in a laboratory environment, attaining satisfactory results with such limited computational resources. Additionally, we tested the proposed method on the Kitti dataset, reaching an average test loss of 15.93 on various sequences. The experiments are documented in this video https://www.youtube.com/watch?v=hnmqwxpaTEw.
Áreas temáticas: Zootecnia / recursos pesqueiros Software Matemática / probabilidade e estatística Interdisciplinar Engenharias iv Engenharias iii Engenharias i Computer science, artificial intelligence Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência da computação Biotecnología Artificial intelligence Administração pública e de empresas, ciências contábeis e turismo
Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
Direcció de correo del autor: mohamed.abdelnasser@urv.cat hatem.abdellatif@urv.cat aditya.singh@urv.cat domenec.puig@urv.cat
Identificador del autor: 0000-0002-1074-2441 0000-0001-5421-1637 0000-0001-6281-9431 0000-0002-0562-4205
Fecha de alta del registro: 2024-09-21
Versión del articulo depositado: info:eu-repo/semantics/acceptedVersion
URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
Referencia al articulo segun fuente origial: Neural Computing & Applications. 34 (18): 15617-15631
Referencia de l'ítem segons les normes APA: Singh, Aditya; Narula, Raghav; Rashwan, Hatem A; Abdel-Nasser, Mohamed; Puig, Domenec; Nandi, G C (2022). Efficient deep learning-based semantic mapping approach using monocular vision for resource-limited mobile robots. Neural Computing & Applications, 34(18), 15617-15631. DOI: 10.1007/s00521-022-07273-7
Entidad: Universitat Rovira i Virgili
Año de publicación de la revista: 2022
Tipo de publicación: Journal Publications