Autor según el artículo: Batista, Edgar; Martinez-Balleste, Antoni; Solanas, Agusti
Departamento: Enginyeria Informàtica i Matemàtiques
Autor/es de la URV: Batista De Frutos, Edgar / Martínez Ballesté, Antoni / Solanas Gómez, Agustín
Palabras clave: Process mining Privacy-preserving process mining Privacy preservation Microaggregation K-anonymity Confidentiality Anonymization process mining privacy preservation microaggregation k-anonymity health confidentiality anonymization
Resumen: The proper exploitation of vast amounts of event data by means of process mining techniques enables the discovery, monitoring and improvement of business processes, allowing organizations to develop more efficient business intelligence systems. However, event data often contain personal and/or confidential information that, unless properly managed, may jeopardize people's privacy while conducting process mining analysis. Despite its relevance, privacy aspects have barely been considered within process mining, and the field of privacy-preserving process mining is still in an embryonic stage. With the aim to protect people's privacy, this article presents a novel privacy-preserving process mining method based on microaggregation techniques, called k-PPPM, that increases privacy in process mining through k-anonymity. Contrary to current solutions, mostly based on pseudonyms and encryption, this method averts the re-identification of targeted individuals from attacks based on the analysis of process models in combination with location-oriented attacks, such as Restricted Space Identification and Object Identification attacks. The proposed method provides adjustable parameters to tune different anonymization aspects. Six real-life event logs have been employed to evaluate the method in terms of process models quality and information loss.
Áreas temáticas: Software Safety, risk, reliability and quality Computer science, information systems Computer networks and communications
Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
Direcció de correo del autor: edgar.batista@urv.cat edgar.batista@urv.cat agusti.solanas@urv.cat antoni.martinez@urv.cat
Identificador del autor: 0000-0002-4881-6215 0000-0002-1787-7410
Fecha de alta del registro: 2024-10-26
Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
Referencia al articulo segun fuente origial: Journal Of Information Security And Applications. 68 103235-
Referencia de l'ítem segons les normes APA: Batista, Edgar; Martinez-Balleste, Antoni; Solanas, Agusti (2022). Privacy-preserving process mining: A microaggregation-based approach. Journal Of Information Security And Applications, 68(), 103235-. DOI: 10.1016/j.jisa.2022.103235
Entidad: Universitat Rovira i Virgili
Año de publicación de la revista: 2022
Tipo de publicación: Journal Publications