Articles producció científica> Enginyeria Mecànica

Comparison between fully resolved and time-averaged simulations of particle cloud dispersion produced by a violent expiratory event

  • Datos identificativos

    Identificador: imarina:9267369
    Autores:
    Lavrinenko, AkimFabregat, AlexandrePallares, Jordi
    Resumen:
    In this work we compare the DNS results (Fabregat et al. 2021, Fabregat et al. 2021) for a mild cough already reported in the literarure with those obtained with a compressible URANS equations with a k-epsilon turbulence model. In both cases, the dispersed phase has been modelled as spherical Lagrangian particles using the one-way coupling assumption. Overall, the URANS model is capable of reproducing the observed tendency of light particles under 64 mu m in diameter to rise due to the action of the drag exerted by the buoyant puff generated by the cough. Both DNS and URANS found that particles above 64 mu m will tend to describe parabolic trajectories under the action of gravitational forces. Grid independence analysis allows to qualify the impact of increasing mesh resolution on the particle cloud statistics as flow evolves. Results suggest that the k-epsilon model overpredicts the horizontal displacement of the particles smaller than 64 mu m while the opposite occurs for the particles larger than 64 mu m.
  • Otros:

    Autor según el artículo: Lavrinenko, Akim; Fabregat, Alexandre; Pallares, Jordi;
    Departamento: Enginyeria Mecànica
    Autor/es de la URV: Fabregat Tomàs, Alexandre / Lavrinenko, Akim / Pallarés Curto, Jorge María
    Palabras clave: Urans Speech Lagrangian particle tracking Evaporation Droplets Dns Covid-19 Cough Cfd Aerosol dispersion
    Resumen: In this work we compare the DNS results (Fabregat et al. 2021, Fabregat et al. 2021) for a mild cough already reported in the literarure with those obtained with a compressible URANS equations with a k-epsilon turbulence model. In both cases, the dispersed phase has been modelled as spherical Lagrangian particles using the one-way coupling assumption. Overall, the URANS model is capable of reproducing the observed tendency of light particles under 64 mu m in diameter to rise due to the action of the drag exerted by the buoyant puff generated by the cough. Both DNS and URANS found that particles above 64 mu m will tend to describe parabolic trajectories under the action of gravitational forces. Grid independence analysis allows to qualify the impact of increasing mesh resolution on the particle cloud statistics as flow evolves. Results suggest that the k-epsilon model overpredicts the horizontal displacement of the particles smaller than 64 mu m while the opposite occurs for the particles larger than 64 mu m.
    Áreas temáticas: Mechanics Mechanical engineering Engineering, mechanical Computational mechanics
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: akim.lavrinenko@urv.cat alexandre.fabregat@urv.cat jordi.pallares@urv.cat
    Identificador del autor: 0000-0002-6032-2605 0000-0003-0305-2714
    Fecha de alta del registro: 2024-09-07
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Acta Mechanica Sinica. 38 (8):
    Referencia de l'ítem segons les normes APA: Lavrinenko, Akim; Fabregat, Alexandre; Pallares, Jordi; (2022). Comparison between fully resolved and time-averaged simulations of particle cloud dispersion produced by a violent expiratory event. Acta Mechanica Sinica, 38(8), -. DOI: 10.1007/s10409-022-09032-x
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2022
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Computational Mechanics,Engineering, Mechanical,Mechanical Engineering,Mechanics
    Urans
    Speech
    Lagrangian particle tracking
    Evaporation
    Droplets
    Dns
    Covid-19
    Cough
    Cfd
    Aerosol dispersion
    Mechanics
    Mechanical engineering
    Engineering, mechanical
    Computational mechanics
  • Documentos:

  • Cerca a google

    Search to google scholar