Articles producció científica> Ciències Mèdiques Bàsiques

Grape-Seed Procyanidin Extract (GSPE) Seasonal-Dependent Modulation of Glucose and Lipid Metabolism in the Liver of Healthy F344 Rats

  • Datos identificativos

    Identificador: imarina:9267375
    Autores:
    Rodriguez, Romina M.Colom-Pellicer, MarinaBlanco, JordiCalvo, EnriqueAragones, GerardMulero, Miquel
    Resumen:
    Seasonality is gaining attention in the modulation of some physiological and metabolic functions in mammals. Furthermore, the consumption of natural compounds, such as GSPE, is steadily increasing. Consequently, in order to study the interaction of seasonal variations in day length over natural compounds' molecular effects, we carried out an animal study using photosensitive rats which were chronically exposed for 9 weeks to three photoperiods (L6, L18, and L12) in order to mimic the day length of different seasons (winter/summer/and autumn-spring). In parallel, animals were also treated either with GSPE 25 (mg/kg) or vehicle (VH) for 4 weeks. Interestingly, a seasonal-dependent GSPE modulation on the hepatic glucose and lipid metabolism was observed. For example, some metabolic genes from the liver (SREBP-1c, Gk, Acaca) changed their expression due to seasonality. Furthermore, the metabolomic results also indicated a seasonal influence on the GSPE effects associated with glucose-6-phosphate, D-glucose, and D-ribose, among others. These differential effects, which were also reflected in some plasmatic parameters (i.e., glucose and triglycerides) and hormones (corticosterone and melatonin), were also associated with significant changes in the expression of several hepatic circadian clock genes (Bmal1, Cry1, and Nr1d1) and ER stress genes (Atf6, Grp78, and Chop). Our results point out the importance of circannual rhythms in regulating metabolic homeostasis and suggest that seasonal variations (long or short photoperiods) affect hepatic metabolism in rats. Furthermore, they suggest that procyanidin consumption could be useful for the modulation of the photoperiod-dependent changes on glucose and lipid metabolism, whose alterations could be related to metabolic diseases (e.
  • Otros:

    Autor según el artículo: Rodriguez, Romina M.; Colom-Pellicer, Marina; Blanco, Jordi; Calvo, Enrique; Aragones, Gerard; Mulero, Miquel;
    Departamento: Bioquímica i Biotecnologia Ciències Mèdiques Bàsiques
    Autor/es de la URV: Aragonès Bargalló, Gerard / Blanco Pérez, Jordi / Calvo Manso, Enrique / Colom Pellicer, Marina / Mulero Abellán, Miguel / Rodriguez, Romina Mariel
    Palabras clave: Seasonal Proanthocyanidin extract Photoperiod Oxidative stress Melatonin Liver Gspe Glycogen-phosphorylase Gene-expression Er stress Endoplasmic-reticulum stress Density-lipoprotein cholesterol Clock genes Ampk Activation
    Resumen: Seasonality is gaining attention in the modulation of some physiological and metabolic functions in mammals. Furthermore, the consumption of natural compounds, such as GSPE, is steadily increasing. Consequently, in order to study the interaction of seasonal variations in day length over natural compounds' molecular effects, we carried out an animal study using photosensitive rats which were chronically exposed for 9 weeks to three photoperiods (L6, L18, and L12) in order to mimic the day length of different seasons (winter/summer/and autumn-spring). In parallel, animals were also treated either with GSPE 25 (mg/kg) or vehicle (VH) for 4 weeks. Interestingly, a seasonal-dependent GSPE modulation on the hepatic glucose and lipid metabolism was observed. For example, some metabolic genes from the liver (SREBP-1c, Gk, Acaca) changed their expression due to seasonality. Furthermore, the metabolomic results also indicated a seasonal influence on the GSPE effects associated with glucose-6-phosphate, D-glucose, and D-ribose, among others. These differential effects, which were also reflected in some plasmatic parameters (i.e., glucose and triglycerides) and hormones (corticosterone and melatonin), were also associated with significant changes in the expression of several hepatic circadian clock genes (Bmal1, Cry1, and Nr1d1) and ER stress genes (Atf6, Grp78, and Chop). Our results point out the importance of circannual rhythms in regulating metabolic homeostasis and suggest that seasonal variations (long or short photoperiods) affect hepatic metabolism in rats. Furthermore, they suggest that procyanidin consumption could be useful for the modulation of the photoperiod-dependent changes on glucose and lipid metabolism, whose alterations could be related to metabolic diseases (e.g., diabetes, obesity, and cardiovascular disease). Furthermore, even though the GSPE effect is not restricted to a specific photoperiod, our results suggest a more significant effect in the L18 condition.
    Áreas temáticas: Química Molecular biology Materiais General medicine Farmacia Ensino Biochemistry & molecular biology Biochemistry
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: marina.colom@urv.cat enrique.calvo@urv.cat marina.colom@urv.cat marina.colom@urv.cat rominamariel.rodriguez@urv.cat rominamariel.rodriguez@urv.cat jordi.blanco@urv.cat miquel.mulero@urv.cat gerard.aragones@urv.cat
    Identificador del autor: 0000-0001-8016-0984
    Fecha de alta del registro: 2024-09-07
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Enlace a la fuente original: https://www.mdpi.com/2218-273X/12/6/839
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Biomolecules. 12 (6):
    Referencia de l'ítem segons les normes APA: Rodriguez, Romina M.; Colom-Pellicer, Marina; Blanco, Jordi; Calvo, Enrique; Aragones, Gerard; Mulero, Miquel; (2022). Grape-Seed Procyanidin Extract (GSPE) Seasonal-Dependent Modulation of Glucose and Lipid Metabolism in the Liver of Healthy F344 Rats. Biomolecules, 12(6), -. DOI: 10.3390/biom12060839
    DOI del artículo: 10.3390/biom12060839
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2022
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Biochemistry,Biochemistry & Molecular Biology,Molecular Biology
    Seasonal
    Proanthocyanidin extract
    Photoperiod
    Oxidative stress
    Melatonin
    Liver
    Gspe
    Glycogen-phosphorylase
    Gene-expression
    Er stress
    Endoplasmic-reticulum stress
    Density-lipoprotein cholesterol
    Clock genes
    Ampk
    Activation
    Química
    Molecular biology
    Materiais
    General medicine
    Farmacia
    Ensino
    Biochemistry & molecular biology
    Biochemistry
  • Documentos:

  • Cerca a google

    Search to google scholar