Articles producció científica> Enginyeria Informàtica i Matemàtiques

On the cyclicity of Kolmogorov polycycles

  • Datos identificativos

    Identificador: imarina:9280619
    Autores:
    Marin, DavidVilladelprat, Jordi
    Resumen:
    In this paper we study planar polynomial Kolmogorov's differential systems Xμ{x˙=f(x,y;μ),y˙=g(x,y;μ), with the parameter μ varying in an open subset Λ⊂RN . Compactifying Xμ to the Poincaré disc, the boundary of the first quadrant is an invariant triangle Γ , that we assume to be a hyperbolic polycycle with exactly three saddle points at its vertices for all μ∈Λ. We are interested in the cyclicity of Γ inside the family {Xμ}μ∈Λ, i.e., the number of limit cycles that bifurcate from Γ as we perturb μ. In our main result we define three functions that play the same role for the cyclicity of the polycycle as the first three Lyapunov quantities for the cyclicity of a focus. As an application we study two cubic Kolmogorov families, with N=3 and N=5 , and in both cases we are able to determine the cyclicity of the polycycle for all μ∈Λ, including those parameters for which the return map along Γ is the identity.
  • Otros:

    Autor según el artículo: Marin, David; Villadelprat, Jordi
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Departamento: Enginyeria Informàtica i Matemàtiques
    Programa de financiación: Herramientas para el análisis de diagramas de bifurcación en sistemas dinámicos
    Código de proyecto: PID2020-118281GB-C33
    Acrónimo: ATBiD
    Resumen: In this paper we study planar polynomial Kolmogorov's differential systems Xμ{x˙=f(x,y;μ),y˙=g(x,y;μ), with the parameter μ varying in an open subset Λ⊂RN . Compactifying Xμ to the Poincaré disc, the boundary of the first quadrant is an invariant triangle Γ , that we assume to be a hyperbolic polycycle with exactly three saddle points at its vertices for all μ∈Λ. We are interested in the cyclicity of Γ inside the family {Xμ}μ∈Λ, i.e., the number of limit cycles that bifurcate from Γ as we perturb μ. In our main result we define three functions that play the same role for the cyclicity of the polycycle as the first three Lyapunov quantities for the cyclicity of a focus. As an application we study two cubic Kolmogorov families, with N=3 and N=5 , and in both cases we are able to determine the cyclicity of the polycycle for all μ∈Λ, including those parameters for which the return map along Γ is the identity.
    Año de publicación de la revista: 2022
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: jordi.villadelprat@urv.cat
    Acción del progama de financiación: Proyectos I+D Generación de Conocimiento
    Tipo de publicación: info:eu-repo/semantics/article
  • Palabras clave:

    limit cycle, polycycle, cyclicity, asymptotic expansion
  • Documentos:

  • Cerca a google

    Search to google scholar