Autor según el artículo: A. Blanco-Justicia, N. Jebreel, J. A. Manjón and J. Domingo-Ferrer
Departamento: Enginyeria Informàtica i Matemàtiques
Autor/es de la URV: Blanco Justicia, Alberto / Domingo Ferrer, Josep / Jebreel, Najeeb Moharram Salim / Manjón Paniagua, Jesús Alberto
Código de proyecto: 101006879
Resumen: Releasing and sharing mobility data, and specifically trajectories, is necessary for many applications, from infrastructure planning to epidemiology. Yet, trajectories are highly sensitive data, because the points visited by an individual can be identifying and also confidential. Hence, trajectories must be anonymized before releasing or sharing them. While most contributions to the trajectory anonymization literature take statistical approaches, deep learning is increasingly being used. We observe that natural language sentences and trajectories share a sequential nature that can be exploited in similar ways. In this paper, we present preliminary work on generating synthetic trajectories using machine learning models typically used for natural language processing. Our empirical results attest to the quality of the generated synthetic trajectories. Furthermore, our methods allow discovering natural neighborhoods based on trajectories.
Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
Direcció de correo del autor: najeeb.jebreel@urv.cat alberto.blanco@urv.cat josep.domingo@urv.cat jesus.manjon@urv.cat jesus.manjon@urv.cat jesus.manjon@urv.cat najeeb.jebreel@urv.cat
Identificador del autor: 0000-0002-1108-8082 0000-0001-7213-4962 0000-0003-3513-8109 0000-0003-3513-8109 0000-0003-3513-8109
Fecha de alta del registro: 2023-11-19
Versión del articulo depositado: info:eu-repo/semantics/acceptedVersion
Programa de financiación: Horizon 2020
Referencia al articulo segun fuente origial: Lecture Notes In Computer Science. 13463 172-187
Referencia de l'ítem segons les normes APA: A. Blanco-Justicia, N. Jebreel, J. A. Manjón and J. Domingo-Ferrer (2022). Generation of Synthetic Trajectory Microdata from Language Models. Lecture Notes In Computer Science, 13463(), 172-187
URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
Acrónimo: MOBIDATALAB
Entidad: Universitat Rovira i Virgili
Año de publicación de la revista: 2022
Acción del progama de financiación: Labs for prototyping future Mobility Data sharing cloud solutions
Tipo de publicación: Journal Publications