Articles producció científica> Enginyeria Informàtica i Matemàtiques

Generation of Synthetic Trajectory Microdata from Language Models

  • Datos identificativos

    Identificador: imarina:9282083
    Autores:
    A. Blanco-Justicia, N. Jebreel, J. A. Manjón and J. Domingo-Ferrer
    Resumen:
    Releasing and sharing mobility data, and specifically trajectories, is necessary for many applications, from infrastructure planning to epidemiology. Yet, trajectories are highly sensitive data, because the points visited by an individual can be identifying and also confidential. Hence, trajectories must be anonymized before releasing or sharing them. While most contributions to the trajectory anonymization literature take statistical approaches, deep learning is increasingly being used. We observe that natural language sentences and trajectories share a sequential nature that can be exploited in similar ways. In this paper, we present preliminary work on generating synthetic trajectories using machine learning models typically used for natural language processing. Our empirical results attest to the quality of the generated synthetic trajectories. Furthermore, our methods allow discovering natural neighborhoods based on trajectories.
  • Otros:

    Autor según el artículo: A. Blanco-Justicia, N. Jebreel, J. A. Manjón and J. Domingo-Ferrer
    Departamento: Enginyeria Informàtica i Matemàtiques
    Autor/es de la URV: Blanco Justicia, Alberto / Domingo Ferrer, Josep / Jebreel, Najeeb Moharram Salim / Manjón Paniagua, Jesús Alberto
    Código de proyecto: 101006879
    Resumen: Releasing and sharing mobility data, and specifically trajectories, is necessary for many applications, from infrastructure planning to epidemiology. Yet, trajectories are highly sensitive data, because the points visited by an individual can be identifying and also confidential. Hence, trajectories must be anonymized before releasing or sharing them. While most contributions to the trajectory anonymization literature take statistical approaches, deep learning is increasingly being used. We observe that natural language sentences and trajectories share a sequential nature that can be exploited in similar ways. In this paper, we present preliminary work on generating synthetic trajectories using machine learning models typically used for natural language processing. Our empirical results attest to the quality of the generated synthetic trajectories. Furthermore, our methods allow discovering natural neighborhoods based on trajectories.
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: najeeb.jebreel@urv.cat alberto.blanco@urv.cat josep.domingo@urv.cat jesus.manjon@urv.cat jesus.manjon@urv.cat jesus.manjon@urv.cat najeeb.jebreel@urv.cat
    Identificador del autor: 0000-0002-1108-8082 0000-0001-7213-4962 0000-0003-3513-8109 0000-0003-3513-8109 0000-0003-3513-8109
    Fecha de alta del registro: 2023-11-19
    Versión del articulo depositado: info:eu-repo/semantics/acceptedVersion
    Programa de financiación: Horizon 2020
    Referencia al articulo segun fuente origial: Lecture Notes In Computer Science. 13463 172-187
    Referencia de l'ítem segons les normes APA: A. Blanco-Justicia, N. Jebreel, J. A. Manjón and J. Domingo-Ferrer (2022). Generation of Synthetic Trajectory Microdata from Language Models. Lecture Notes In Computer Science, 13463(), 172-187
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Acrónimo: MOBIDATALAB
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2022
    Acción del progama de financiación: Labs for prototyping future Mobility Data sharing cloud solutions
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Privacy; Synthetic data generation; Mobility data
  • Documentos:

  • Cerca a google

    Search to google scholar