Articles producció científica> Gestió d'Empreses

Dynamic grouping of vehicle trajectories

  • Datos identificativos

    Identificador: imarina:9283416
    Autores:
    Reyes GLanzarini LEstrebou CBariviera A
    Resumen:
    Vehicular traffic volume in large cities has increased in recent years, causing mobility problems; therefore, the analysis of vehicle flow data becomes a relevant research topic. Intelligent Transportation Systems mon-itor and control vehicular movements by collecting GPS trajectories, which provides the geographic lo-cation of vehicles in real time. Thus information is processed using clustering techniques to identify vehicular flow patterns. This work presents a methodology capable of analyzing the vehicular flow in a given area, identifying speed ranges and keeping an interactive map updated that facilitates the identification of pos-sible traffic jam areas. The obtained results on three data sets from the cities of Guayaquil-Ecuador, Rome-Italy and Beijing-China are satisfactory and clearly represent the speed of movement of the vehicles, auto-matically identifying the most representative ranges in real time.
  • Otros:

    Autor según el artículo: Reyes G; Lanzarini L; Estrebou C; Bariviera A
    Departamento: Gestió d'Empreses
    Autor/es de la URV: Fernández Bariviera, Aurelio
    Palabras clave: Vehicular trajectories Dynamic clustering Data stream
    Resumen: Vehicular traffic volume in large cities has increased in recent years, causing mobility problems; therefore, the analysis of vehicle flow data becomes a relevant research topic. Intelligent Transportation Systems mon-itor and control vehicular movements by collecting GPS trajectories, which provides the geographic lo-cation of vehicles in real time. Thus information is processed using clustering techniques to identify vehicular flow patterns. This work presents a methodology capable of analyzing the vehicular flow in a given area, identifying speed ranges and keeping an interactive map updated that facilitates the identification of pos-sible traffic jam areas. The obtained results on three data sets from the cities of Guayaquil-Ecuador, Rome-Italy and Beijing-China are satisfactory and clearly represent the speed of movement of the vehicles, auto-matically identifying the most representative ranges in real time.
    Áreas temáticas: Software Hardware and architecture Computer vision and pattern recognition Computer science, artificial intelligence Computer science applications Computer science (miscellaneous) Artificial intelligence
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: aurelio.fernandez@urv.cat
    Identificador del autor: 0000-0003-1014-1010
    Fecha de alta del registro: 2024-09-07
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Journal Of Computer Science & Technology (Jcs&t). 22 (2): 141-150
    Referencia de l'ítem segons les normes APA: Reyes G; Lanzarini L; Estrebou C; Bariviera A (2022). Dynamic grouping of vehicle trajectories. Journal Of Computer Science & Technology (Jcs&t), 22(2), 141-150. DOI: 10.24215/16666038.22.e11
    DOI del artículo: 10.24215/16666038.22.e11
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2022
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Artificial Intelligence,Computer Science (Miscellaneous),Computer Science Applications,Computer Science, Artificial Intelligence,Computer Vision and Pattern Recognition,Hardware and Architecture,Software
    Vehicular trajectories
    Dynamic clustering
    Data stream
    Software
    Hardware and architecture
    Computer vision and pattern recognition
    Computer science, artificial intelligence
    Computer science applications
    Computer science (miscellaneous)
    Artificial intelligence
  • Documentos:

  • Cerca a google

    Search to google scholar