Autor según el artículo: Vergara A; Llobet E
Departamento: Enginyeria Electrònica, Elèctrica i Automàtica
Autor/es de la URV: Llobet Valero, Eduard / VERGARA TINOCO, ALEXANDER
Palabras clave: Tunable sensors Temperature dependence Technology Sensor-array optimization Sensor optimization Sensor Semiconductor Review Quantitative analysis Process optimization Probability Power spectrum Oxygen Oxidation Odor Micro hotplate gas sensor Methanol Metal-oxide gas sensors Metal oxide Machine learning Gas sensor Ethylene Electronic nose Conductance Classification Chemosensor Chemical sensor Alcohol Active sensing Acetone
Resumen: Over the past two decades, despite the tremendous research on chemical sensors and machine olfaction to develop micro-sensory systems that will accomplish the growing existent needs in personal health (implantable sensors), environment monitoring (widely distributed sensor networks), and security/threat detection (chemo/bio warfare agents), simple, low-cost molecular sensing platforms capable of long-term autonomous operation remain beyond the current state-of-the-art of chemical sensing. A fundamental issue within this context is that most of the chemical sensors depend on interactions between the targeted species and the surfaces functionalized with receptors that bind the target species selectively, and that these binding events are coupled with transduction processes that begin to change when they are exposed to the messy world of real samples. With the advent of fundamental breakthroughs at the intersection of materials science, micro- and nano-technology, and signal processing, hybrid chemo-sensory systems have incorporated tunable, optimizable operating parameters, through which changes in the response characteristics can be modeled and compensated as the environmental conditions or application needs change. The objective of this article, in this context, is to bring together the key advances at the device, data processing, and system levels that enable chemo-sensory systems to "adapt" in response to their environments. Accordingly, in this review we will feature the research effort made by selected experts on chemical sensing and information theory, whose work has been devoted to develop strategies that provide tunability and adaptability to single sensor devices or sensory array systems. Particularly, we consider sensor-array selection, modulation of internal sensing parameters, and active sensing.The article ends with some conclusions drawn from the results presented and a visionary look toward the future in terms of how the field may evolve. © 2012 Vergara and Llobet.
Áreas temáticas: Neuroscience (miscellaneous) Biophysics Biomedical engineering
Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
Direcció de correo del autor: eduard.llobet@urv.cat
Identificador del autor: 0000-0001-6164-4342
Fecha de alta del registro: 2023-02-19
Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
Enlace a la fuente original: https://www.frontiersin.org/articles/10.3389/fneng.2011.00019/full
Referencia al articulo segun fuente origial: Frontiers In Neuroengineering. (JANUARY):
Referencia de l'ítem segons les normes APA: Vergara A; Llobet E (2012). Sensor selection and chemo-sensory optimization: Toward an adaptable chemo-sensory system. Frontiers In Neuroengineering, (JANUARY), -
URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
DOI del artículo: 10.3389/fneng.2011.00019
Entidad: Universitat Rovira i Virgili
Año de publicación de la revista: 2012
Tipo de publicación: Journal Publications