Articles producció científica> Enginyeria Química

Advances in photocatalytic reduction of hexavalent chromium: From fundamental concepts to materials design and technology challenges

  • Datos identificativos

    Identificador: imarina:9286870
    Autores:
    Djellabi, RidhaSu, PeidongElimian, Ehiaghe AgbovhimenPoliukhova, ValeriiaNouacer, SanaAbdelhafeez, Islam AAbderrahim, NesrineAboagye, DominicAndhalkar, Vaibhav VilasNabgan, WalidRtimi, SamiContreras, Sandra
    Resumen:
    Toxic Cr(VI) polluted wastewater is worldwide recognized because of the wide application of chromium substances in various industrial sectors. Sustainable water pollution approaches are on demand now more than ever. In terms of Cr(VI), many homogenous and heterogenous techniques are applying to intensify its removal form water. Photocatalytic reduction of Cr(VI) has been suggested widely by the scientific community over the last two decades. This report addresses the current research state of the photocatalytic Cr(VI) reduction by addressing the most advances in terms of materials design and mechanistic pathways depending on the working conditions. The photocatalytic activity of different classes of materials such as single or heterojunction semiconductors, hybridization of photocatalyst nanoparticles (NPs) with sorbing materials, i.e., carbonaceous materials, metal-organic frameworks (MOFs), and conjugated polymers, is discussed in depth. The photodeposition of photoproduced Cr(III) on the surface of photocatalysts, and approaches to boost its desorption was addressed as well. The review discusses also the simultaneous photocatalytic reduction of Cr(VI) and oxidation of organic pollutants. A critical analysis of the current state and how to transfer substantial fundamental research to present world application was given by addressing the pros and cons of photocatalytic technology for Cr(VI) reduction compared to existing technologies. Positive research suggestions were provided to enhance the ability of photocatalytic technology for possible use, even for the purification of small volumes of industrial wastewater.
  • Otros:

    Autor según el artículo: Djellabi, Ridha; Su, Peidong; Elimian, Ehiaghe Agbovhimen; Poliukhova, Valeriia; Nouacer, Sana; Abdelhafeez, Islam A; Abderrahim, Nesrine; Aboagye, Dominic; Andhalkar, Vaibhav Vilas; Nabgan, Walid; Rtimi, Sami; Contreras, Sandra
    Departamento: Enginyeria Química
    Autor/es de la URV: Aboagye, Dominic / Andhalkar, Vaibhav Vilas / Contreras Iglesias, Sandra / Djellabi, Ridha / Nabgan, Walid
    Palabras clave: Simultaneous removal Photocatalysis Metal-organic frameworks Heterojunction semiconductors Cr(vi) photoreduction Conjugated polymers
    Resumen: Toxic Cr(VI) polluted wastewater is worldwide recognized because of the wide application of chromium substances in various industrial sectors. Sustainable water pollution approaches are on demand now more than ever. In terms of Cr(VI), many homogenous and heterogenous techniques are applying to intensify its removal form water. Photocatalytic reduction of Cr(VI) has been suggested widely by the scientific community over the last two decades. This report addresses the current research state of the photocatalytic Cr(VI) reduction by addressing the most advances in terms of materials design and mechanistic pathways depending on the working conditions. The photocatalytic activity of different classes of materials such as single or heterojunction semiconductors, hybridization of photocatalyst nanoparticles (NPs) with sorbing materials, i.e., carbonaceous materials, metal-organic frameworks (MOFs), and conjugated polymers, is discussed in depth. The photodeposition of photoproduced Cr(III) on the surface of photocatalysts, and approaches to boost its desorption was addressed as well. The review discusses also the simultaneous photocatalytic reduction of Cr(VI) and oxidation of organic pollutants. A critical analysis of the current state and how to transfer substantial fundamental research to present world application was given by addressing the pros and cons of photocatalytic technology for Cr(VI) reduction compared to existing technologies. Positive research suggestions were provided to enhance the ability of photocatalytic technology for possible use, even for the purification of small volumes of industrial wastewater.
    Áreas temáticas: Water science and technology Water resources Waste management and disposal Safety, risk, reliability and quality Química Process chemistry and technology Materiais Farmacia Engineering, environmental Engineering, chemical Engenharias iii Engenharias ii Engenharias i Ciências ambientais Ciências agrárias i Ciência de alimentos Biotechnology Astronomia / física
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: walid.nabgan@urv.cat dominic.aboagye@estudiants.urv.cat dominic.aboagye@estudiants.urv.cat vaibhavvilas.andhalkar@estudiants.urv.cat vaibhavvilas.andhalkar@estudiants.urv.cat sandra.contreras@urv.cat
    Identificador del autor: 0000-0001-9901-862X 0000-0003-4686-0762 0000-0003-4686-0762 0000-0001-8917-4733
    Fecha de alta del registro: 2024-10-12
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Journal Of Water Process Engineering. 50 103301-
    Referencia de l'ítem segons les normes APA: Djellabi, Ridha; Su, Peidong; Elimian, Ehiaghe Agbovhimen; Poliukhova, Valeriia; Nouacer, Sana; Abdelhafeez, Islam A; Abderrahim, Nesrine; Aboagye, Do (2022). Advances in photocatalytic reduction of hexavalent chromium: From fundamental concepts to materials design and technology challenges. Journal Of Water Process Engineering, 50(), 103301-. DOI: 10.1016/j.jwpe.2022.103301
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2022
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Biotechnology,Engineering, Chemical,Engineering, Environmental,Process Chemistry and Technology,Safety, Risk, Reliability and Quality,Waste Management and Disposal,Water Resources,Water Science and Technology
    Simultaneous removal
    Photocatalysis
    Metal-organic frameworks
    Heterojunction semiconductors
    Cr(vi) photoreduction
    Conjugated polymers
    Water science and technology
    Water resources
    Waste management and disposal
    Safety, risk, reliability and quality
    Química
    Process chemistry and technology
    Materiais
    Farmacia
    Engineering, environmental
    Engineering, chemical
    Engenharias iii
    Engenharias ii
    Engenharias i
    Ciências ambientais
    Ciências agrárias i
    Ciência de alimentos
    Biotechnology
    Astronomia / física
  • Documentos:

  • Cerca a google

    Search to google scholar