Articles producció científica> Enginyeria Electrònica, Elèctrica i Automàtica

Thermal Activation of PEDOT:PSS/PM6:Y7 Based Films Leads to Unprecedent High Short-Circuit Current Density in Nonfullerene Organic Photovoltaics

  • Datos identificativos

    Identificador: imarina:9287551
    Autores:
    Moustafa, EnasMendez, MariaSanchez, Jose GPallares, JosepPalomares, EmilioMarsal, Lluis F
    Resumen:
    Finding an effective approach to suppress trap formation is a potential route for enhancing the performance of nonfullerene organic photovoltaic (NF-OPVs) devices. Here, an extraordinary short-circuit current density (JSC) value of 32.65 mA cm-2 is achieved, higher than the state-of-the art NF-OPVs reported, reaching a high power conversion efficiency (PCE) of 17.92%. This remarkable enhancement is exhibited through the fine-tuning of PEDOT:PSS/PM6:Y7 films and interface morphologies via applying the prethermal treatment approach (Pre-TT) to the devices, which exhibit JSC and PCE enhancement of 21% and 8%, respectively, compared to the pristine devices. Accordingly, the dependence of the JSC upon the Pre-TT approach through a range of morphological, optical, electrical, and advanced transient measurements is investigated. The Pre-TT-based films are found to possess optimal smooth blend morphology with better dispersity owing to reduced domain size. Moreover, the measurements show that the optimized treated devices present higher exciton dissociation probabilities and generation rate of the free charge carriers, showing an ideal balanced electron/hole mobility that reveals the JSC and PCE enhancement. Hence, Pre-TT approach provides a facile passivation strategy that reduces the trap state density of the blend film, improves interface charge transfer, allows balanced electron/hole mobility, and thus promotes device performance.
  • Otros:

    Autor según el artículo: Moustafa, Enas; Mendez, Maria; Sanchez, Jose G; Pallares, Josep; Palomares, Emilio; Marsal, Lluis F
    Departamento: Enginyeria Electrònica, Elèctrica i Automàtica
    Autor/es de la URV: Marsal Garví, Luis Francisco / MÉNDEZ MÁLAGA, MARIA / Pallarès Marzal, Josep / SANCHEZ LÓPEZ, JOSÉ GUADALUPE
    Palabras clave: Thermal annealing Nonfullerene organic photovoltaics Interface morphology Binary heterojunctions Balanced electron/hole mobility Balanced electron thermal annealing nonfullerene organic photovoltaics interface morphology hole mobility binary heterojunctions
    Resumen: Finding an effective approach to suppress trap formation is a potential route for enhancing the performance of nonfullerene organic photovoltaic (NF-OPVs) devices. Here, an extraordinary short-circuit current density (JSC) value of 32.65 mA cm-2 is achieved, higher than the state-of-the art NF-OPVs reported, reaching a high power conversion efficiency (PCE) of 17.92%. This remarkable enhancement is exhibited through the fine-tuning of PEDOT:PSS/PM6:Y7 films and interface morphologies via applying the prethermal treatment approach (Pre-TT) to the devices, which exhibit JSC and PCE enhancement of 21% and 8%, respectively, compared to the pristine devices. Accordingly, the dependence of the JSC upon the Pre-TT approach through a range of morphological, optical, electrical, and advanced transient measurements is investigated. The Pre-TT-based films are found to possess optimal smooth blend morphology with better dispersity owing to reduced domain size. Moreover, the measurements show that the optimized treated devices present higher exciton dissociation probabilities and generation rate of the free charge carriers, showing an ideal balanced electron/hole mobility that reveals the JSC and PCE enhancement. Hence, Pre-TT approach provides a facile passivation strategy that reduces the trap state density of the blend film, improves interface charge transfer, allows balanced electron/hole mobility, and thus promotes device performance.
    Áreas temáticas: Renewable energy, sustainability and the environment Physics, condensed matter Physics, applied Materials science, multidisciplinary Materials science (miscellaneous) Materials science (all) General materials science Energy & fuels Chemistry, physical
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: josep.pallares@urv.cat lluis.marsal@urv.cat
    Identificador del autor: 0000-0001-7221-5383 0000-0002-5976-1408
    Fecha de alta del registro: 2024-10-12
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Enlace a la fuente original: https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.202203241
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Advanced Energy Materials. 13 (4):
    Referencia de l'ítem segons les normes APA: Moustafa, Enas; Mendez, Maria; Sanchez, Jose G; Pallares, Josep; Palomares, Emilio; Marsal, Lluis F (2023). Thermal Activation of PEDOT:PSS/PM6:Y7 Based Films Leads to Unprecedent High Short-Circuit Current Density in Nonfullerene Organic Photovoltaics. Advanced Energy Materials, 13(4), -. DOI: 10.1002/aenm.202203241
    DOI del artículo: 10.1002/aenm.202203241
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2023
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Chemistry, Physical,Energy & Fuels,Materials Science (Miscellaneous),Materials Science, Multidisciplinary,Physics, Applied,Physics, Condensed Matter,Renewable Energy, Sustainability and the Environment
    Thermal annealing
    Nonfullerene organic photovoltaics
    Interface morphology
    Binary heterojunctions
    Balanced electron/hole mobility
    Balanced electron
    thermal annealing
    nonfullerene organic photovoltaics
    interface morphology
    hole mobility
    binary heterojunctions
    Renewable energy, sustainability and the environment
    Physics, condensed matter
    Physics, applied
    Materials science, multidisciplinary
    Materials science (miscellaneous)
    Materials science (all)
    General materials science
    Energy & fuels
    Chemistry, physical
  • Documentos:

  • Cerca a google

    Search to google scholar