Articles producció científica> Química Física i Inorgànica

Hybrid Molecular Magnets with Lanthanide- and Countercation-Mediated Interfacial Electron Transfer between Phthalocyanine and Polyoxovanadate

  • Datos identificativos

    Identificador: imarina:9287582
    Autores:
    Werner IGriebel JMasip-Sánchez ALópez XZałȩski KKozłowski PKahnt ABoerner MWarneke ZWarneke JMonakhov KY
    Resumen:
    A series of {V12}-nuclearity polyoxovanadate cages covalently functionalized with one or sandwiched by two phthalocyaninato (Pc) lanthanide (Ln) moieties via V-O-Ln bonds were prepared and fully characterized for paramagnetic Ln = SmIII-ErIII and diamagnetic Ln = LuIII, including YIII. The LnPc-functionalized {V12O32} cages with fully oxidized vanadium centers in the ground state were isolated as (nBu4N)3[HV12O32Cl(LnPc)] and (nBu4N)2[HV12O32Cl(LnPc)2] compounds. As corroborated by a combined experimental (EPR, DC and AC SQUID, laser photolysis transient absorption spectroscopy, and electrochemistry) and computational (DFT, MD, and model Hamiltonian approach) methods, the compounds feature intra- and intermolecular electron transfer that is responsible for a partial reduction at V(3d) centers from VV to VIV in the solid state and at high sample concentrations. The effects are generally Ln dependent and are clearly demonstrated for the (nBu4N)3[HV12O32Cl(LnPc)] representative with Ln = LuIII or DyIII. Intramolecular charge transfer takes place for Ln = LuIII and occurs from a Pc ligand via the Ln center to the {V12O32} core of the same molecule, whereas for Ln = DyIII, only intermolecular charge transfer is allowed, which is realized from Pc in one molecule to the {V12O32} core of another molecule usually via the nBu4N+ countercation. For all Ln but DyIII, two of these phenomena may be present in different proportions. Besides, it is demonstrated that (nBu4N)3[HV12O32Cl(DyPc)] is a field-induced single molecule magnet with a maximal relaxation time of the order 10-3 s. The obtained results open up the way to further exploration and fine-tuning of these three modular molecular nanocomposites regarding tailoring and control of their Ln-dependent charge-separated states (in
  • Otros:

    Autor según el artículo: Werner I; Griebel J; Masip-Sánchez A; López X; Załȩski K; Kozłowski P; Kahnt A; Boerner M; Warneke Z; Warneke J; Monakhov KY
    Departamento: Química Física i Inorgànica
    Autor/es de la URV: López Fernández, Javier / Masip Sánchez, Albert
    Palabras clave: Charge-transfer visible-light spectra polyoxometalate platforms geometry field dependence building-blocks absorption
    Resumen: A series of {V12}-nuclearity polyoxovanadate cages covalently functionalized with one or sandwiched by two phthalocyaninato (Pc) lanthanide (Ln) moieties via V-O-Ln bonds were prepared and fully characterized for paramagnetic Ln = SmIII-ErIII and diamagnetic Ln = LuIII, including YIII. The LnPc-functionalized {V12O32} cages with fully oxidized vanadium centers in the ground state were isolated as (nBu4N)3[HV12O32Cl(LnPc)] and (nBu4N)2[HV12O32Cl(LnPc)2] compounds. As corroborated by a combined experimental (EPR, DC and AC SQUID, laser photolysis transient absorption spectroscopy, and electrochemistry) and computational (DFT, MD, and model Hamiltonian approach) methods, the compounds feature intra- and intermolecular electron transfer that is responsible for a partial reduction at V(3d) centers from VV to VIV in the solid state and at high sample concentrations. The effects are generally Ln dependent and are clearly demonstrated for the (nBu4N)3[HV12O32Cl(LnPc)] representative with Ln = LuIII or DyIII. Intramolecular charge transfer takes place for Ln = LuIII and occurs from a Pc ligand via the Ln center to the {V12O32} core of the same molecule, whereas for Ln = DyIII, only intermolecular charge transfer is allowed, which is realized from Pc in one molecule to the {V12O32} core of another molecule usually via the nBu4N+ countercation. For all Ln but DyIII, two of these phenomena may be present in different proportions. Besides, it is demonstrated that (nBu4N)3[HV12O32Cl(DyPc)] is a field-induced single molecule magnet with a maximal relaxation time of the order 10-3 s. The obtained results open up the way to further exploration and fine-tuning of these three modular molecular nanocomposites regarding tailoring and control of their Ln-dependent charge-separated states (induced by intramolecular transfer) and relaxation dynamics as well as of electron hopping between molecules. This should enable us to realize ultra-sensitive polyoxometalate powered quasi-superconductors, sensors, and data storage/processing materials for quantum technologies and neuromorphic computing.
    Áreas temáticas: Química Physical and theoretical chemistry Medicina i Materiais Interdisciplinar Inorganic chemistry General medicine Farmacia Engenharias iii Engenharias ii Engenharias i Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências agrárias i Chemistry, inorganic & nuclear Chemistry (miscellaneous) Biotecnología Astronomia / física
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: albert.masip@urv.cat javier.lopez@urv.cat
    Identificador del autor: 0000-0003-0322-6796
    Fecha de alta del registro: 2024-09-07
    Versión del articulo depositado: info:eu-repo/semantics/acceptedVersion
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Inorganic Chemistry. 62 (9): 3761-3775
    Referencia de l'ítem segons les normes APA: Werner I; Griebel J; Masip-Sánchez A; López X; Załȩski K; Kozłowski P; Kahnt A; Boerner M; Warneke Z; Warneke J; Monakhov KY (2022). Hybrid Molecular Magnets with Lanthanide- and Countercation-Mediated Interfacial Electron Transfer between Phthalocyanine and Polyoxovanadate. Inorganic Chemistry, 62(9), 3761-3775. DOI: 10.1021/acs.inorgchem.2c03599
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2022
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Chemistry (Miscellaneous),Chemistry, Inorganic & Nuclear,Inorganic Chemistry,Physical and Theoretical Chemistry
    Charge-transfer
    visible-light
    spectra
    polyoxometalate
    platforms
    geometry
    field
    dependence
    building-blocks
    absorption
    Química
    Physical and theoretical chemistry
    Medicina i
    Materiais
    Interdisciplinar
    Inorganic chemistry
    General medicine
    Farmacia
    Engenharias iii
    Engenharias ii
    Engenharias i
    Ciências biológicas iii
    Ciências biológicas ii
    Ciências biológicas i
    Ciências agrárias i
    Chemistry, inorganic & nuclear
    Chemistry (miscellaneous)
    Biotecnología
    Astronomia / física
  • Documentos:

  • Cerca a google

    Search to google scholar