Autor según el artículo: Curti, M; Maffeis, V; Duarte, LGTA; Shareef, S; Hallado, LX; Curutchet, C; Romero, E
Departamento: Química Física i Inorgànica
Autor/es de la URV: Hallado Abaunza, Luisa Xiomara / Shareef, Saeed
Palabras clave: Molecular-dynamics simulations Molecular dynamics De novo protein design Cofactor binding Artificial photosynthesis states stability spectroscopy molecular dynamics energy-transfer de-novo design de novo protein design complex ii cofactor binding
Resumen: In photosynthesis, pigment - protein complexes achieve outstanding photoinduced charge separation efficiencies through a set of strategies in which excited states delocalisation over multiple pigments ('excitons') and charge-transfer states play key roles. These concepts, and their implementation in bioinspired artificial systems, are attracting increasing attention due to the vast potential that could be tapped by realising efficient photochemical reactions. In particular, de novo designed proteins provide a diverse structural toolbox that can be used to manipulate the geometric and electronic properties of bound chromophore molecules. However, achieving excitonic and charge-transfer states requires closely spaced chromophores, a non-trivial aspect since a strong binding with the protein matrix needs to be maintained. Here, we show how a general-purpose artificial protein can be optimised via molecular dynamics simulations to improve its binding capacity of a chlorophyll derivative, achieving complexes in which chromophores form two closely spaced and strongly interacting dimers. Based on spectroscopy results and computational modelling, we demonstrate each dimer is excitonically coupled, and propose they display signatures of charge-transfer state mixing. This work could open new avenues for the rational design of chromophore - protein complexes with advanced functionalities. This article is protected by copyright. All rights reserved.© 2023 The Protein Society.
Áreas temáticas: Química Molecular biology Medicine (miscellaneous) Interdisciplinar Farmacia Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Biotecnología Biochemistry & molecular biology Biochemistry
Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
Direcció de correo del autor: luisaxiomara.hallado@estudiants.urv.cat saeed.shareef@estudiants.urv.cat
Identificador del autor: 0000-0002-8412-1939
Fecha de alta del registro: 2024-08-03
Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
Enlace a la fuente original: https://onlinelibrary.wiley.com/doi/full/10.1002/pro.4579
URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
Referencia al articulo segun fuente origial: Protein Science. 32 (3): e4579-e4579
Referencia de l'ítem segons les normes APA: Curti, M; Maffeis, V; Duarte, LGTA; Shareef, S; Hallado, LX; Curutchet, C; Romero, E (2023). Engineering Excitonically-Coupled Dimers in an Artificial Protein for Light Harvesting via Computational Modelling. Protein Science, 32(3), e4579-e4579. DOI: 10.1002/pro.4579
DOI del artículo: 10.1002/pro.4579
Entidad: Universitat Rovira i Virgili
Año de publicación de la revista: 2023
Tipo de publicación: Journal Publications