Articles producció científica> Enginyeria Informàtica i Matemàtiques

The adjacency dimension of graphs

  • Datos identificativos

    Identificador: imarina:9293726
    Autores:
    S BermudoJM RodríguezJA Rodríguez-VelázquezJM Sigarreta
    Resumen:
    It is known that the problem of computing the adjacency dimension of a graph is NP-hard. This suggests finding the adjacency dimension for special classes of graphs or obtaining good bounds on this invariant. In this work we obtain general bounds on the adjacency dimension of a graph G in terms of known parameters of G. We discuss the tightness of these bounds and, for some particular classes of graphs, we obtain closed formulae. In particular, we show the close relationships that exist between the adjacency dimension and other parameters, like the domination number, the location-domination number, the 2-domination number, the independent 2-domination number, the vertex cover number, the independence number and the super domination number.
  • Otros:

    Autor según el artículo: S Bermudo; JM Rodríguez; JA Rodríguez-Velázquez; JM Sigarreta
    Departamento: Enginyeria Informàtica i Matemàtiques
    Autor/es de la URV: Rodríguez Velázquez, Juan Alberto
    Palabras clave: Super domination number Metric dimension Location-domination number Independence number Adjacency dimension
    Resumen: It is known that the problem of computing the adjacency dimension of a graph is NP-hard. This suggests finding the adjacency dimension for special classes of graphs or obtaining good bounds on this invariant. In this work we obtain general bounds on the adjacency dimension of a graph G in terms of known parameters of G. We discuss the tightness of these bounds and, for some particular classes of graphs, we obtain closed formulae. In particular, we show the close relationships that exist between the adjacency dimension and other parameters, like the domination number, the location-domination number, the 2-domination number, the independent 2-domination number, the vertex cover number, the independence number and the super domination number.
    Áreas temáticas: Theoretical computer science Mathematics, applied Mathematics Matemática / probabilidade e estatística Geometry and topology Discrete mathematics and combinatorics Algebra and number theory
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: juanalberto.rodriguez@urv.cat
    Identificador del autor: 0000-0002-9082-7647
    Fecha de alta del registro: 2024-10-26
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Enlace a la fuente original: https://amc-journal.eu/index.php/amc/article/view/2496
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Ars Mathematica Contemporanea. 22 (3), # P3. 02-16 pp. (3):
    Referencia de l'ítem segons les normes APA: S Bermudo; JM Rodríguez; JA Rodríguez-Velázquez; JM Sigarreta (2022). The adjacency dimension of graphs. Ars Mathematica Contemporanea, 22 (3), # P3. 02-16 pp.(3), -. DOI: 10.26493/1855-3974.2496.07a
    DOI del artículo: 10.26493/1855-3974.2496.07a
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2022
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Algebra and Number Theory,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematics,Mathematics, Applied,Theoretical Computer Science
    Super domination number
    Metric dimension
    Location-domination number
    Independence number
    Adjacency dimension
    Theoretical computer science
    Mathematics, applied
    Mathematics
    Matemática / probabilidade e estatística
    Geometry and topology
    Discrete mathematics and combinatorics
    Algebra and number theory
  • Documentos:

  • Cerca a google

    Search to google scholar