Articles producció científica> Enginyeria Informàtica i Matemàtiques

On the number of vertices of projective polytopes

  • Datos identificativos

    Identificador: imarina:9295555
    Autores:
    Garcia-Colin, NMontejano, LPAlfonsin, JLR
    Resumen:
    Let X be a set of n points in Rd$\mathbb {R}<^>d$ in general position. What is the maximum number of vertices that conv(T(X))$\mathsf {conv}(T(X))$ can have among all the possible permissible projective transformations T? In this paper, we investigate this and other related questions. After presenting several upper bounds, obtained by using oriented matroid machinery, we study a closely related problem (via Gale transforms) concerning the maximal number of minimal Radon partitions of a set of points. The latter led us to a result supporting a positive answer to a question of Pach and Szegedy asking whether balanced 2-colorings of points in the plane maximize the number of induced multicolored Radon partitions. We also discuss a related problem concerning the size of topes in arrangements of hyperplanes as well as a tolerance-type problem of finite sets.
  • Otros:

    Autor según el artículo: Garcia-Colin, N; Montejano, LP; Alfonsin, JLR
    Departamento: Enginyeria Informàtica i Matemàtiques
    Autor/es de la URV: Montejano Cantoral, Luis Pedro
    Palabras clave: Proof Cells Arrangements
    Resumen: Let X be a set of n points in Rd$\mathbb {R}<^>d$ in general position. What is the maximum number of vertices that conv(T(X))$\mathsf {conv}(T(X))$ can have among all the possible permissible projective transformations T? In this paper, we investigate this and other related questions. After presenting several upper bounds, obtained by using oriented matroid machinery, we study a closely related problem (via Gale transforms) concerning the maximal number of minimal Radon partitions of a set of points. The latter led us to a result supporting a positive answer to a question of Pach and Szegedy asking whether balanced 2-colorings of points in the plane maximize the number of induced multicolored Radon partitions. We also discuss a related problem concerning the size of topes in arrangements of hyperplanes as well as a tolerance-type problem of finite sets.
    Áreas temáticas: Mathematics, applied Mathematics (miscellaneous) Mathematics (all) Mathematics General mathematics
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: luispedro.montejano@urv.cat
    Fecha de alta del registro: 2024-08-03
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Enlace a la fuente original: https://londmathsoc.onlinelibrary.wiley.com/doi/full/10.1112/mtk.12193
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Mathematika. 69 (2): 535-561
    Referencia de l'ítem segons les normes APA: Garcia-Colin, N; Montejano, LP; Alfonsin, JLR (2023). On the number of vertices of projective polytopes. Mathematika, 69(2), 535-561. DOI: 10.1112/mtk.12193
    DOI del artículo: 10.1112/mtk.12193
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2023
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Mathematics,Mathematics (Miscellaneous),Mathematics, Applied
    Proof
    Cells
    Arrangements
    Mathematics, applied
    Mathematics (miscellaneous)
    Mathematics (all)
    Mathematics
    General mathematics
  • Documentos:

  • Cerca a google

    Search to google scholar