Autor según el artículo: Malaspina, D C; Lisal, M; Larentzos, J P; Brennan, J K; Mackie, A D; Avalos, J Bonet
Departamento: Enginyeria Química
Autor/es de la URV: Bonet Avalos, José / Mackie Walker, Allan Donald
Palabras clave: Molecular-dynamics temperature statistical-mechanics irreversible-processes hard-sphere fluid conservation
Resumen: In this article we demonstrate that contrary to general belief, the standard Einstein-Helfand (EH) formulas are valid for the evaluation of transport coefficients of systems containing dissipative and random forces provided that for these mesoscopic systems: (i) the corresponding conservation laws are satisfied, and (ii) the transition probabilities satisfy detailed balance. Dissipative particle dynamics (DPD) and energy-conserving DPD methods (DPDE), for instance, are archetypical of such mesoscopic approaches satisfying these properties. To verify this statement, we have derived a mesoscopic heat flux form for the DPDE method, suitable for the calculation of the thermal conductivity from an EH expression. We have compared EH measurements against non-equilibrium simulation values for different scenarios, including many-body potentials, and have found excellent agreement in all cases. The expressions are valid notably for systems with density- and temperature-dependent potentials, such as the recently developed generalised DPDE method (GenDPDE) [Avalos et al., Phys. Chem. Chem. Phys., 2019, 21, 24891]. We thus demonstrate that traditional EH formulas in equilibrium simulations can be widely used to obtain transport coefficients, provided that the appropriate expression for the associated flux is used.
Áreas temáticas: Química Physics, atomic, molecular & chemical Physics and astronomy (miscellaneous) Physics and astronomy (all) Physical and theoretical chemistry Odontología Medicina ii Medicina i Materiais Matemática / probabilidade e estatística Interdisciplinar Geociências General physics and astronomy General medicine Farmacia Ensino Engenharias iv Engenharias iii Engenharias ii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Ciência da computação Chemistry, physical Biotecnología Biodiversidade Astronomia / física
Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
Direcció de correo del autor: allan.mackie@urv.cat josep.bonet@urv.cat
Identificador del autor: 0000-0002-1819-7820 0000-0002-7339-9564
Fecha de alta del registro: 2024-10-12
Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
Enlace a la fuente original: https://pubs.rsc.org/en/content/articlelanding/2023/cp/d2cp04838h
URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
Referencia al articulo segun fuente origial: Physical Chemistry Chemical Physics. 25 (17): 12025-12040
Referencia de l'ítem segons les normes APA: Malaspina, D C; Lisal, M; Larentzos, J P; Brennan, J K; Mackie, A D; Avalos, J Bonet (2023). Transport coefficients from Einstein-Helfand relations using standard and energy-conserving dissipative particle dynamics methods. Physical Chemistry Chemical Physics, 25(17), 12025-12040. DOI: 10.1039/d2cp04838h
DOI del artículo: 10.1039/d2cp04838h
Entidad: Universitat Rovira i Virgili
Año de publicación de la revista: 2023
Tipo de publicación: Journal Publications