Articles producció científica> Enginyeria Informàtica i Matemàtiques

Analysis of SARS-CoV-2 in wastewater for prevalence estimation and investigating clinical diagnostic test biases

  • Datos identificativos

    Identificador: imarina:9325552
    Autores:
    Mattei, MattiaPinto, Rosa MGuix, SusanaBosch, AlbertArenas, Alex
    Resumen:
    Here we analyze SARS-CoV-2 genome copies in Catalonia's wastewater during the Omicron peak and develop a mathematical model to estimate the number of infections and the temporal relationship between reported and unreported cases. 1-liter samples from 16 wastewater treatment plants were collected and used in a compartmental epidemiological model. The average correlation between genome copies and reported cases was 0.85, with an average delay of 8.8 days. The model estimated that 53% of the population was infected, compared to the 19% reported cases. The under-reporting was highest in November and December 2021. The maximum genome copies shed in feces by an infected individual was estimated to range from 1.4×108 gc/g to 4.4×108 gc/g. Our framework demonstrates the potential of wastewater data as a leading indicator for daily new infections, particularly in contexts with low detection rates. It also serves as a complementary tool for prevalence estimation and offers a general approach for integrating wastewater data into compartmental models.
  • Otros:

    Autor según el artículo: Mattei, Mattia; Pinto, Rosa M; Guix, Susana; Bosch, Albert; Arenas, Alex
    Departamento: Enginyeria Informàtica i Matemàtiques
    Autor/es de la URV: Arenas Moreno, Alejandro / Mattei, Mattia
    Código de proyecto: Grant agreement No. 945413
    Palabras clave: Wastewater Sars-cov-2 Rna, viral Prevalence Prediction bias Model Mathematical modeling Humans Diagnostic tests, routine Covid-19 testing Covid-19 Bias sars-cov-2 prediction bias mathematical modeling
    Resumen: Here we analyze SARS-CoV-2 genome copies in Catalonia's wastewater during the Omicron peak and develop a mathematical model to estimate the number of infections and the temporal relationship between reported and unreported cases. 1-liter samples from 16 wastewater treatment plants were collected and used in a compartmental epidemiological model. The average correlation between genome copies and reported cases was 0.85, with an average delay of 8.8 days. The model estimated that 53% of the population was infected, compared to the 19% reported cases. The under-reporting was highest in November and December 2021. The maximum genome copies shed in feces by an infected individual was estimated to range from 1.4×108 gc/g to 4.4×108 gc/g. Our framework demonstrates the potential of wastewater data as a leading indicator for daily new infections, particularly in contexts with low detection rates. It also serves as a complementary tool for prevalence estimation and offers a general approach for integrating wastewater data into compartmental models.
    Áreas temáticas: Water science and technology Water resources Waste management and disposal Saúde coletiva Química Pollution Medicina ii Materiais Interdisciplinar Geociências General medicine Farmacia Environmental sciences Environmental engineering Engineering, environmental Engineering, civil Engenharias iv Engenharias iii Engenharias ii Engenharias i Ecological modeling Civil and structural engineering Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Biotecnología Biodiversidade Astronomia / física
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: mattia.mattei@urv.cat mattia.mattei@urv.cat alexandre.arenas@urv.cat
    Identificador del autor: 0000-0003-0937-0334
    Fecha de alta del registro: 2024-09-28
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Enlace a la fuente original: https://www.sciencedirect.com/science/article/pii/S0043135423006590
    Programa de financiación: Marie Sklodowska-Curie Actions – European Union’s Horizon 2020 research and innovation programme
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Water Research. 242 120223-
    Referencia de l'ítem segons les normes APA: Mattei, Mattia; Pinto, Rosa M; Guix, Susana; Bosch, Albert; Arenas, Alex (2023). Analysis of SARS-CoV-2 in wastewater for prevalence estimation and investigating clinical diagnostic test biases. Water Research, 242(), 120223-. DOI: 10.1016/j.watres.2023.120223
    Acrónimo: MFP-Plus
    DOI del artículo: 10.1016/j.watres.2023.120223
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2023
    Acción del progama de financiación: Martí i Franquès COFUND Doctoral Programme
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Civil and Structural Engineering,Ecological Modeling,Engineering, Civil,Engineering, Environmental,Environmental Engineering,Environmental Sciences,Pollution,Waste Management and Disposal,Water Resources,Water Science and Technology
    Wastewater
    Sars-cov-2
    Rna, viral
    Prevalence
    Prediction bias
    Model
    Mathematical modeling
    Humans
    Diagnostic tests, routine
    Covid-19 testing
    Covid-19
    Bias
    sars-cov-2
    prediction bias
    mathematical modeling
    Water science and technology
    Water resources
    Waste management and disposal
    Saúde coletiva
    Química
    Pollution
    Medicina ii
    Materiais
    Interdisciplinar
    Geociências
    General medicine
    Farmacia
    Environmental sciences
    Environmental engineering
    Engineering, environmental
    Engineering, civil
    Engenharias iv
    Engenharias iii
    Engenharias ii
    Engenharias i
    Ecological modeling
    Civil and structural engineering
    Ciências biológicas iii
    Ciências biológicas ii
    Ciências biológicas i
    Ciências ambientais
    Ciências agrárias i
    Biotecnología
    Biodiversidade
    Astronomia / física
  • Documentos:

  • Cerca a google

    Search to google scholar